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Abstract

Health is a complex dynamic process that impacts many economic decisions

in ways that remain poorly understood. This chapter comprehensively reviews

how health is modelled in the literature, showing that baseline models typically

fail to take into account how persistence and frequency of health shocks vary

by past health history and magnitude and direction of past shocks. Methods

from the earnings dynamics literature are adapted to produce improved health

persistence estimates. This chapter also investigates how medical biomarker

data can be incorporated in dynamic models of health as a proxy for underlying

health. There is significant scope for further work in this area as more medical

data becomes available to researchers.
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1 Introduction

Health is an important determinant of an individual’s economic decision making,

affecting labour supply, consumption, family composition and access to government-

provided insurance. Accurately modelling health as a dynamic process is needed to

answer several important and open questions in the literature, including what is the

relationship between health and earnings inequality, how effective are the current

government-provided safety nets for those who fall ill, and how best should govern-

ments respond to the increasing economic burdens of chronic disease, rising disability

rates and an ageing population. There has been a significant amount of reduced-form

work on these questions (Prinz et al. (2018) provides a good summary). More recently,

structural approaches have been used to better understand some of the complex en-

dogeneity between health and economic decision making. These models typically

capture health dynamics in a highly simplified way to minimise computational bur-

den. The contributions made by this chapter are relevant to both these reduced form

and structural approaches.

This chapter makes three key contributions to the literature. Firstly, it provides a

comprehensive assessment of the different ways health dynamics have been modelled

in the literature. Researchers have typically borrowed from the earnings dynamics

literature and modelled health as a simple linear process such as an autoregressive

moving average process, often discretised as a first-order Markov process, or the sum

of a permanent and transitory shock. To the author’s knowledge, there have been

no prior attempts to systematically evaluate these modelling approaches and their

underlying assumptions. I use Understanding Society data, a commonly-used UK

household panel dataset, to replicate the most common models of health dynam-

ics using standard panel data techniques. I then evaluate how well they capture

key features of the health process, focussing on estimates of persistence and cross-

sectional heterogeneity caused by different health shock realisations. I show that an

ARMA(1,1) model with a large AR(1) coefficient close to one and a moderately-sized

negative MA(1) coefficient fit the data reasonably well. An alternative linear model

that combines a permanent process and a transitory process can be a desirable alter-

native as it allows for two types of shocks with different properties, but at the expense

of some very strong and potentially incorrect persistence assumptions.
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One of the most important components of health dynamics to accurately model is

persistence. An individual is likely to respond very differently to a highly persistent

health shock compared to a moderately persistent one. In the ARMA(1,1) model, the

AR(1) term captures the average persistence of health from last period, which is then

modified by the MA(1) term depending on the magnitude of the prior period’s error

term. I show that persistence heterogeneity is much greater than captured by this

model, and varies systematically by past health and the features of the health shock.

On average, health shocks are more persistent if they are negative (a decline in health

rather than an improvement), if the individual was in poor health prior to the shock,

and if the health shock is large. The standard linear models of health dynamics do

not capture this heterogeneity, and therefore tend to be overly-optimistic in modelling

the health dynamics of those with a history of poor health who experience additional

negative health shocks.

A related limitation is that these models are not particularly effective in captur-

ing the different distributions of health shock risks that individuals face. While an

ARMA(1,1) model can be estimated using GMM techniques that are fairly robust

to various error distribution assumptions, the most obvious application of the model

would impose a mean-zero independent and identically distributed (i.i.d.) normal

error distribution, while the model that is a sum of a random walk and a moving

average transitory process has a normally-distributed error term. I document several

ways that the error terms, which I interpret as health shocks, deviate from an i.i.d.

normal distribution. First, there is a strong relationship between past health and the

expected distribution of future health shocks. Those in poor health face an increased

risk of both large negative and large positive health shocks, while the variance of

health shocks faced by those in good health is much lower. The variance of health

shocks is higher for negative shocks than positive shocks, even when controlling for

past health. Finally, the baseline models do not accurately replicate the higher order

moments of the data.

The second contribution of this chapter is to address many of the limitations of

these standard linear models of health by adapting a recent panel data technique from

the earnings dynamics literature. I use Arellano, Blundell and Bonhomme (2017)’s

quantile-based method to produce non-linear persistence estimates that allow for a

large amount of heterogeneity. One attraction of this framework is that it allows for

3



persistence to vary depending on the size and sign of the health shock that occurs in

period t, which cannot be done using the standard linear models due to the endogene-

ity between the shock and persistence estimates that relate health in period t− 1 to

health in period t. Applying this framework to my health data produces persistence

estimates that range from 0.6 to 1.2, depending on prior health and characteristics

of the shock in period t. This framework is able to capture that the persistence of

the health process is higher among individuals in poor prior health, and that pos-

itive health shocks are typically less persistent than negative health shocks. These

improved persistence estimates better capture the health risks faced by individuals,

with implications for our understanding of the impact of health on economic deci-

sions such as labour supply and consumption. I also estimate an extended version of

this framework that is able to strip out time-invariant unobserved heterogeneity from

the persistence estimates, and consider the wider applicability of the framework by

applying it to produce non-linear persistence estimates of an index of mental health.

Finally, this chapter investigates how best to use increasingly-available medical

data to improve health modelling. These data are available for a subset of individuals

in the Understanding Society dataset. Previous studies have shown that biomarker

data such as inflammation markers and steroid hormones in the blood can predict

future adverse health outcomes in ostensibly healthy people (Davillas and Pudney,

2020a). To the author’s knowledge, this data has never been used to better model

health dynamics. I find that incorporating the biomarker data into my models of

health dynamics does not improve their persistence estimates. However, the data can

be used to better model the different health risks individuals face. I show that the

ARMA(1,1) model performs less well in cases where the biomarker data suggest that

an individual’s underlying health is very poor. These are typically cases where an

individual does not report any serious health conditions, but they face a significantly

elevated risk of negative health shocks. This is an important source of risk to capture.

I also find that variation in biomarker data is strongly correlated with the variation

captured by the fixed effect component of the persistence estimates produced using the

Arellano, Blundell and Bonhomme (2017) framework. This suggests that biomarker

data can be used to better understand and model individual heterogeneity in health

outcomes, a topic that remains poorly understood.

The remainder of this chapter is structured as follows. Section 2 reviews the
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relevant literature and Section 3 describes the data, focussing on the construction of

indices to capture observed and underlying health. Section 4 reviews the baseline

dynamic health models in the literature and section 5 identifies their limitations.

Section 6 applies methods from the earnings literature to produce non-linear estimates

of persistence. Section 7 concludes.
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2 Literature Review

There is a body of literature that develops methods of aggregating survey health

data into an index of overall health, which I summarise in the data section of this

chapter. However, answering questions on the relationship between health and eco-

nomic outcomes often require us to take a stance on how health evolves over time.

There is some reduced form work on this question (O’Donnell, Van Doorslaer and

Van Ourti, 2015), but the most common approach in the literature has been to ap-

ply the vast literature on modelling earnings dynamics to model health as a simple

linear process, most commonly as an ARMA(p,q) process or the sum of a persistent

and a transitory component. In the structural literature, a discrete version of this

approach; a first-order Markov process with a small number of discrete health states,

has commonly been used. However, the implications and limitations of these models

has only very recently begun to be examined in the literature. I review the modelling

health as a dynamic process literature, highlighting the gaps that this chapter seeks

to fill.

The canonical papers that model the time series properties of the mean of earnings,

such as Lillard and Willis (1978), MaCurdy (1982), and Abowd and Card (1989) use

panel data to fit ARMA-type processes to earnings data. A recent example of this

approach applied to health data is Blundell et al. (2020), who represent health (h̃t)

using the error correction model: h̃t = πt+ εt. The persistent component (πt) evolves

as a random walk: πt = πt−1 + ηt, and εt is a MA(0) transitory component. Alterna-

tive specifications in the literature include modelling the persistent component as an

AR(1) or higher order process so the effect of a shock to the persistent component

decays over time, and adding more structure to the transitory component, such as by

incorporating moving-average terms (Blundell et al., 2016), or by modelling health as

a stock that decays (Wallenius, 2020). To reduce dimensionality, health processes that

are included in structural models are typically discretised into a first-order Markov

process that models transitions between discrete health states. There are many exam-

ples: Palumbo (1999), French (2005), De Nardi, French and Jones (2010), Attanasio,

Kitao and Violante (2010), French and Jones (2011), Capatina (2015), Jung and

Tran (2016), Braun, Kopecky and Koreshkova (2017), Imrohoroglu and Zhao (2018),

Jolivet and Postel-Vinay (2020), Nygaard (2021) and Amengual, Bueren and Crego
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(2021). Earlier structural papers typically only modelled two health states, good and

bad health, while more recent papers tend to include additional states, for example

Jolivet and Postel-Vinay (2020) model four states of mental health: good, average,

poor and severe. Some of these papers endogenise the health process by incorporating

the impact of choices such as unhealthy consumption of cigarettes (Nygaard, 2021)

or medical expenditure choices (Prados, 2018). Zweifel, Breyer and Kifmann (2009)

model people choosing the level of health investment to marginally alter their transi-

tion probabilities between different health states. An important distinction between

these Markov models and ARMA models is that the latter imposes a symmetry be-

tween positive and negative health shocks. Markov models do not have this feature,

and the data suggest that the transition probability from good to poor health differs

from the transition probability from poor health to good health.

Both ARMA and Markov models emphasise the state dependency of the health

process. This can downplay the importance of individual heterogeneity in explaining

the large cross-sectional variance in health observed in the data. Halliday (2008)

finds that individual characteristics that trace back to childhood and early adult-

hood play an important role in determining how long health shocks persist, while

the importance of state dependence varies significantly. However, he acknowledges

that his first-order Markov model with only two health states limits his ability to pin

down state dependence. Hauck and Rice (2004) similarly emphasise the importance

of individual heterogeneity relative to state dependence in modelling mental health

transitions. Pashchenko, Porapakkarm and Nardi (2017) find that variation in health

transitions due to ‘health types’ is much larger than variation due to state-dependence

for men with a high-school education. Of particular interest is some ongoing work

recently presented by De Nardi (2024), which identifies health types with different

expected health trajectories. Performing clustering analysis on frailty measures, they

identify five health types that they label as vigorous resilient, fair-health resilient,

fair-health vulnerable, frail-resilient, and frail-vulnerable. They find that these types

explain a large share of subsequent health trajectories of older adults, and signifi-

cantly outperform forecasts of health trajectories based on initial health and a rich

set of observables. These classifications are based on a clustering algorithm and the

authors do not attempt to explain what causes these different health types. However,

the authors do highlight the recent empirical literature that emphasises the life-long
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economic consequences of genetics and early childhood experiences such as Barth,

Papageorge and Thom (2020), Conti and Heckman (2010), Case, Fertig and Paxson

(2004), Harris et al. (2016) and Cronqvist and Siegel (2015). Understanding the na-

ture of this individual heterogeneity is of central importance to answering questions

such as what causes the relationship between health and education, or health and

earnings inequality, which currently remains poorly understood.

Some of the recent papers containing structural models have made progress in cap-

turing additional complexity of health dynamics, most commonly by adding an extra

variable that varies health shock risk such as ‘health type’ or ‘underlying health’.

Pashchenko, Porapakkarm and Nardi (2017) augment a standard first-order Markov

model of health with transition probabilities that also depend on the duration of the

current health spell and ‘health type’, which is a proxy for individual heterogeneity

and affects transition likelihood. They find evidence of ‘duration dependence’ where

the longer that someone has stayed in a particular state of health the less likely they

are to transition states next period. This is not consistent with a low-order Markov

process of health dynamics. Salvati (2021) incorporates a similar fixed-effect variable

which is described as a proxy for high or low health into her model of health. She

embeds a health equation into her life-cycle model that consists of an AR(1) pro-

cess, a binary fixed effect term, a labour-market health interaction term, and various

independent variables. Ozkan (2017) models two types of health capital: physical

health capital that determines survival probability and preventative health capital

that is subject to health shocks and can be modified by health investment. Keane,

Capatina and Maruyama (2020) make progress in modelling individual heterogeneity

by incorporating an asymptomatic health risk variable estimated with medical data.

In this model, individuals have functional health that is subject to three types of

shocks: predictable and persistent shocks, unpredictable and persistent shocks, and

unpredictable and transitory shocks. Asymptomatic health risk captures conditions

such as high cholesterol, high blood pressure and high BMI that do not directly af-

fect daily life but increase the probability for future predictable adverse shocks to

functional health. While these models have made progress in capturing health dy-

namics, these equations tend to be a small component of large and complex structural

models with computational demands that limit what these models can capture. The

‘black-box’ nature of these models can make it difficult to understand the mechanics
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of the interactions between health and other variables. This chapter identifies some

of limitations of modelling health in this way.
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3 Data

The main dataset used in this chapter is Understanding Society - the UK House-

hold Longitudinal Study. This is a longitudinal, nationally representative dataset with

good coverage of health, education, employment, family life and income variables. I

build an unbalanced panel using waves 1-12 of the study, which include observations

from 2009–2021. Excluding a small number of individuals with insufficient health in-

formation results in a sample of 265,830 observations from 29,886 unique individuals.

Table 1 reports the summary statistics of this sample and indicates good coverage

over age, education, family type and employment.∗

3.1 Health index construction

In many settings, the theoretically-ideal health index would be an overall stock of

health measure, or a related concept such as a work-capacity index. Such an index

would be continuous and bounded from below (death). Since these are unobservable

concepts, we can instead construct a proxy index by aggregating various health data

from household panel surveys. The available data can be grouped into three main

categories. Objective health data are data on specific diagnoses and disabilities.

Subjective health data are based on survey respondents’ assessment of their own

health. A third category of data is medical data such as pulse, blood pressure readings,

blood tests or genomic data that can be used to predict health outcomes. Some of

these medical data, such as genetic information, may be plausibly exogenous to any

experiences or choices of the individual, which can be valuable for statistical analysis.

The limitations of each of these categories of health data as proxies for overall

health has been thoroughly evaluated in several papers (Blundell et al. (2021) pro-

vides a good summary of this literature). To briefly summarise, objective measures

are vulnerable to omitted variable bias, they can only capture a subset of relevant

conditions, and often lack disease severity information. The rate of omission of life-

changing medical diagnoses such as heart attacks and strokes reported by survey

∗There is some gender imbalance in the sample (57% female, 43% male). This mostly reflects the
raw Understanding Society data, which is split 55% female and 45% male. My sample is then further
female skewed by men being more likely to enter the sample as proxies where partial information
is provided about them by another household member, but they are unable or unwilling to respond
themselves. Therefore, I do not have their subjective health scores and drop them from the sample.
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Table 1: Summary statistics

men women
age
<30 17,205 24,567
30-39 17,026 24,991
40-49 21,968 30,142
50-59 21,938 28,848
60-69 19,815 24,204
70-79 12,489 13,950
80-89 3,553 4,448
90+ 282 404

education
below GSCEs 25,743 31,135
GSCEs 31,755 41,889
A-level 13,476 16,622
degree 43,302 61,908

family type
cohabitating/married 80,910 95,630
widowed 3,315 10,427
separated/divorced 7,111 16,091
single 22,772 29,068

number of children
0 86,026 106,463
1 11,818 19,822
2 12,271 18,718
3 3,299 5,088
4+ 862 1,463

currently employed
yes 72,589 88,493
no 41,500 62,779

occupation class
professional 6,324 4,820
managerial & technical 28,854 34,801
skilled non-manual 9,532 24,154
skilled manual 18,719 9,105
partially skilled 7,269 14,316
unskilled 2,651 2,005

N (observations) 114,276 151,554
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respondents has been found to be surprisingly high when compared to linked hospi-

tal admission data, suggesting measurement error could be large (Caraballo et al.,

2020). Subjective health measures are fairly crude and vulnerable to reporting error

and justification bias. For a given disease presentation, people will vary hugely in

how poorly they rate their health and to what degree they report that the disease

has a negative impact on their life (French and Jones, 2017). Medical data are less

commonly collected in household surveys and there is limited research on how best

to use them to model health.

A challenge in the literature has been how best to use these data to construct

an overall health index that minimises these biases and approximate the ideal the-

oretical health concept. Lack of consensus on this question has contributed to the

ongoing uncertainty of the relationship between health and employment (Blundell

et al., 2021). For example, large differences have been found when estimating the

impact of poor health on labour supply using objective or subjective health data

(Anderson and Burkhauser, 1984). To reduce these biases, a common approach has

been to instrument subjective health data with objective data. This approach is still

regularly used, with Blundell et al. (2020) being a recent example, although the ap-

proach is not without criticism. Bound (1991) argues that the different types of biases

affecting subjective health measures roughly offset, so that incorporating objective

health data adds little value and may increase bias. Alternative approaches to ag-

gregating health data have included taking the first principle component over a large

number of objective measures (Poterba, Venti and Wise, 2017), constructing multi-

ple indices (Blau and Gilleskie, 2001), and converting medical conditions into World

Health Organisation disability weights that represent the magnitude of health loss as-

sociated with specific health outcomes, which can then be aggregated (Prados, 2018).

A helpful contribution was made by Blundell et al. (2021) who comprehensively eval-

uated the different approaches in the literature to identify how should health data be

combined to best represent overall health. They conclude that objective measures,

provided that a large enough set of them are used, subjective measures, and subjective

measures instrumented with objective measures can produce similar estimates of the

impact of health on employment, and any of these modelling approach can reasonably

be used. This finding was broadly supported by Hosseini, Kopecky and Zhao (2022),

who compares the performance of a ‘frailty index’ that aggregates objective indicators
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with a subjective health index, and an index constructed using principal component

analysis, and similarly finds that the predictive power of the different approaches to

be broadly comparable.

I follow the literature and use both subjective and objective health data to con-

struct a single health index that functions as a proxy for an individual’s overall stock

of health. The subjective data comes from the survey question ‘In general, would you

say your health is: poor, fair, good, very good or excellent? ’. The objective health

data used is reported in Table 2.

Table 2: Objective health indicators

Objective measure Data
Disabilities (specified
as causing ’some dif-
ficulty’ or ’much diffi-
culty’)

12 indicators: manual dexterity, mobility, lifting/moving ob-
jects, continence, hearing, sight, communication/speech, mem-
ory/ability to concentrate and learn, recognising danger, physical
co-ordination, personal care, other

Mental wellbeing General Health Questionnaire (GHQ) Caseness measure. Mea-
sures common mental health problems e.g. depression, anxiety,
somatic symptoms, social withdrawal to detect those at risk of
developing psychiatric disorders.

Ever diagnosed with
condition

asthma, congestive heart failure, coronary heart disease, angina,
heart attack, stroke, emphysema, hypothyroidism, chronic bron-
chitis, liver condition, epilepsy, hypertension, multiple sclerosis,
COPD, osteoarthritis, rheumatoid arthritis, other arthritis, can-
cers: bowel/colorectal, lung, breast, prostate, liver, skin, other,
diabetes: type 1, type 2, gestational and other, anxiety, depres-
sion, psychosis/schizophrenia, bipolar/manic depression, eating
disorders, PTSD, other emotional/nervous/psychiatric condi-
tion, other chronic condition

Still have previously
diagnosed condition

Conditions: asthma, congestive heart failure, coronary heart dis-
ease, angina, hypothyroidism, chronic bronchitis, liver condition,
epilepsy, hypertension, COPD, osteoarthritis, rheumatoid arthri-
tis, cancers: bowel/colorectal, breast, prostate and skin, type 2
diabetes, anxiety, depression, eating disorders, PTSD

Hospital out-patient 1-2 days, 3-5 days, 6-10 days, >10 days in the past year

Hospital in-patient 1-2 days, 3-5 days, 6-10 days, >10 days in the past year
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To construct a single health index, I follow the approach of Blundell et al. (2020)

and estimate an ordered probit of an individual’s subjective reported health on a

rich dataset of objective health measures, and then take the predicted values from

this regression to be the individual’s health index. I run the following ordered probit

regression where H∗
it is the unobserved continuous latent general health variable and

Hit is the observed ordinal general health score assessed by the individual in period

t. Hit = {1, 2, 3, 4, 5} where 1 = poor, 2 = fair, 3 = good, 4 = very good, and 5 =

excellent. Xit is a vector of objective measures and some additional controls, and

ϵit is the individual error term. The included controls are age, sex, an employment

dummy, occupation class, and month and year dummies. The Pseudo-R square from

these ordered probit regressions is around 0.2. Each wave is estimated separately,

and a sample of the regression output is reported in Appendix A.2.

H∗
it = X

′

itβt + ϵit, ϵit ∼ N (0, 1) ∀ i = 1...N, t = 1...T

Hit = j if µjt < H∗
it < µj−1,t j = {1, 2, 3, 4, 5}

The probability that individual i selects general health value j in period t is:

Pr(Hit = j) = Φ(µjt −X
′

itβt)− Φ(µj−1,t −X
′

itβt)

I then map the ordered probit fitted values onto the general health scores using a

linear regression of the subjective scores onto the predicted values, and re-calculating

the fitted values. The distribution of the original subjective health scores and con-

structed health index is shown in Figure 1.

The constructed health index can be interpreted as the average subjective health

score reported by all individuals with the same medical diagnoses and disabilities,

controlling for individual characteristics such as age and sex. The distribution of these

scores is left-skewed due to a large tail of individuals in poor health, and its kurtosis is

around double that of a normal distribution, with many individuals bunching around

the modal score.

Figure 2 indicates that differences in health index values between men and women

are small. I include men and women in the same regression to calculate the health

indices but include a gender dummy variable to allow for variation by gender. Average
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Figure 1

The left hand side figure shows the raw health data; the right hand side shows the con-
structed health index data distribution

health index scores gradually decline with age, although they are fairly stable between

the ages of 55-65. Variance in health scores increases with age, especially from the

age of around 50. To strip out this decline in health by age, I demean the health index

by regressing the health index against age, higher powers of age up to order four, sex,

and month/year dummies. The residuals from this regression become the ‘demeaned

health index’ that I use to model health as a dynamic process in subsequent chapters

of this thesis

Figure 2: Distribution of health index values by age and gender

Figure 3 shows the distribution of changes to an individual’s demeaned health
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index over one year and ten years. In both cases the distribution has a slight negative

skew, of -0.5 and -0.8 respectively. The approximate symmetry of shocks supports

the use of simple linear ARMA models that impose symmetry of shocks.

Figure 3

A potential concern is that attrition rates vary systematically by health. In my

dataset, around 18 per cent of observations do not have an observation next period,

either due to attrition or missing data. Estimating a linear probability model of

attrition indicates that those in the lowest health quintile are two percentage points

more likely to not report health data next period relative to those in better health.

However, the literature is fairly sanguine about the risks of using health indices for

economic research when there is differential attrition risk by health (Jones, Koolman

and Rice, 2006; Pudney and Watson, 2013). I choose to follow this literature and

do not atempt to adjust for attrition rates in my subsequent modelling of health

dynamics. Further analysis of attrition in my dataset is reported in Appendix A.1.
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3.2 Allostatic scores from biomarker data

Between 2010–12, a subset of 8,465 individuals from waves 2 and 3 of the main

Understanding Society survey were visited by a nurse for a physical health check and

gave a blood sample. I use this biomarker (biological marker) data to construct a

second index that approximates a component of underlying health called ‘allostatic

load’. This is a medical concept that reflects the risk from the cumulative effects of

exposure to physical, psychosocial and environmental stressors that increase the risk

of developing chronic diseases (Group, 2001). As a measure of cumulative wear and

tear to the body, allostatic load is theoretically quite close to overall health stock

or working capacity, although it cannot capture mental health or physical injury or

disability.

Biomarker data can be used to improve health dynamics modelling for several rea-

sons. They can be measured with less error than other health data that rely on an

individual accurately describing their health. The availability of biomarker data is

likely to grow rapidly following the increasing popularity of wearable health technol-

ogy such as smart watches. They can help predict future health and mortality risk in

ostensibly healthy individuals (Davillas and Pudney, 2020b,c). Davillas and Pudney

(2020a) find that combining subjective health data with biomarker data significantly

improves their predictions of future disability risk. This is because biomarker data

incorporate health information such as kidney function and hormonal balance that

may not be known by the individual, and because it offsets people’s bias towards

over-weighting certain health information such as obesity and blood pressure, and

under-weighting other information such as strength and lung function. Biomarker

data can also help disentangle the endogeneity between health and economic out-

comes, and have been used to better understand the income-health gradient (Davillas,

Jones and Benzeval, 2019), the impact of economic insecurity and childhood economic

circumstances on health (Niedzwiedz et al., 2017; Davillas and Jones, 2020), and com-

paring the health impact of becoming re-employed in poor quality work compared to

remaining unemployed (Chandola and Zhang, 2017).

To construct the allostatic score index, I normalise and then aggregate the biomarker

data. I follow the approach of Davillas and Pudney (2020a) and take the simple av-

erage of the z-scores of 12 biomarkers and physical indicators reported in Table 3. I
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then demean the allostatic scores by age and gender to match how I constructed my

health index. The subsequent distribution is approximately normal (Figure 4).

Table 3: Biomarkers used in allostatic load index construction

Indicator Data Description
waist-to-height ra-
tio

waist circumference, body
mass index

obesity indicator

pulse resting heart rate lower heart rate associated with more efficient heart
function

blood pressure systolic, diastolic two readings treated as separate indicators

lung function forced vital capacity
(FVC)

total amount of air forcibly blown out after a full inspi-
ration using a spirometer

blood sugar glycated haemoglobin lev-
els (HbA1c)

measures glucose intolerance, a good indicator of dia-
betes risk

inflammation C-reactive protein (CRP) is a protein in the blood that rises in response to general
chronic or systemic inflammation. High levels are risk
factor for cardiovascular disease and mortality.

kidney function creatinine Creatinine is a waste product of muscle function, which
is passed through the kidneys and excreted in urine.
Glomerular filtration rate (eGFR) calculated using cre-
atinine data according to calculation cited in Benzeval
et al. (2014). Indicates how effectively the kidneys are
‘cleaning’ the blood.

liver function albumin levels albumin is main protein made by the liver. Low levels
may be indicative of a loss of liver function

steroid hormone ihydroepian-drosterone
sulphate (DHEAS)

one of the primary mechanisms through which psychoso-
cial stressors may affect health. Low levels associated
with cardiovascular risk and all-cause mortality

cholesterol high-density lipoprotein
cholesterol (HDL)

‘good’ cholesterol that helps remove other forms of
cholesterol from the bloodstream. High levels lower risk
of cardiovascular disease.

grip strength maximum grip strength correlated with overall body strength, lower scores asso-
ciated with decreased physical function, disability and
mortality

A limitation of these data is that I only have one set of biomarker observations

per individual. However, the predictive content of allostatic scores is fairly stable

over time. I show this by regressing my health index against the allostatic score

index, varying the time gap between the data used for the health index and the

allostatic score (Table 4). An allostatic score has similar predictive power for a
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Figure 4

health index based on survey data collected one year later to a health index based on

data collected ten years later. This suggests that allostatic scores capture a stable,

long-term measure of health. There is a planned second round of biomarker data

collection during wave 16 of Understanding Society in 2024–26, which can be used to

check the stability of biomarker data over time more formally (Kumari, Al Baghal

and Benzeval, 2022).

Table 4: Health index predictive content of allostatic scores

Number of waves between collection of allostatic score and health index data
1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

allo. 0.527∗∗∗ 0.533∗∗∗ 0.526∗∗∗ 0.517∗∗∗ 0.522∗∗∗ 0.562∗∗∗ 0.583∗∗∗ 0.468∗∗∗ 0.439∗∗∗

(0.0208) (0.0207) (0.0218) (0.0217) (0.0219) (0.0231) (0.0240) (0.0240) (0.0237)

R-sq 0.080 0.082 0.073 0.073 0.075 0.083 0.086 0.061 0.058
Obs 7434 7456 7400 7269 7024 6519 6249 5895 5536

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Alongside biomarker data, genetic data was also collected. However, the Under-

standing Society genetic data is safeguarded special license data. Therefore, I perform

some preliminary analysis using an alternate dataset, The English Longitudinal Study
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of Ageing (ELSA), on whether genetic data can be used as an additional health risk

indicator when modelling health dynamics. The ELSA dataset reports polygenic

scores for a variety of behavioural, emotional and health-related phenotypes, which

estimate an individual’s genetic propensity to develop various physical and mental

health conditions. However, I find that while the polgenic scores do contain additional

information on future health outcomes not captured by the the health or allostatic

indices, the size of the additional information is too small to significantly improve my

modelling of the overall health process. Further details of this analysis is reported in

Appendix A.3.
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4 Modelling health as a dynamic process

Health is a complex dynamic process that is subject to shocks that vary in magni-

tude and persistence. Heterogeneity between individuals is also large. In this section,

I use panel data techniques to identify how best to model health as a simple lin-

ear process. I estimate two baseline models that replicate the two most commonly

used approaches to modelling health dynamics: an ARMA(p,q) model, and a lin-

ear additive shock model that is the sum of a permanent process and a transitory

MA(1) process. I find that an ARMA(1,1) model with a large AR coefficient and a

moderately-sized negative MA coefficient best fits the data, although there are cir-

cumstances where the extra flexibility of the linear additive shock model in capturing

two different shocks may be desirable. I then evaluate how effective these models are

in capturing health dynamics accurately. I show that while these models can be ap-

pealing due to their simplicity and intuitive interpretation, they have some important

limitations that I discuss in detail in the next section.

4.1 ARMA(p,q) baseline model

The two data attributes that I wish to capture in any baseline model of health are

the persistence of innovations, and cross-sectional heterogeneity between individuals.

My starting point is the simplest linear models that incorporate persistence; the

autoregressive moving average (ARMA) class of models. I model health of individual

i in period t (hit) as an ARMA(p,q) process that includes a fixed effect µi:
†

hit =

p∑
k=1

ρkhi,t−k +

q∑
j=1

θjεi,t−j + µi + εit (1)

i = 1...N, t = 1...T

The p lags of the ρ term make up the autoregressive AR(p) components, and

the q lags of the θ term make up the moving average MA(q) components. It is

important to note that the health process I estimate is based on data that has been

detrended by age and gender. This was done by regressing the raw health index

†The ARMA models I describe in this section all allow for individual-specific fixed effects unless
otherwise stated
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against these observable variable and taking the residuals as the detrended health

index. This detrending is quite common in the literature, perhaps due to familiarity

with modelling the component of earnings growth that is unexplained by observables

such as experience and education. Furthermore, detrending by age removes the time

trend as health declines over time, reducing the risk that the process is non-stationary.

Small changes in survey design between waves is controlled for by including time

dummies. Nonetheless, it may be attractive for the researcher to explicitly model the

decline in health as people age. I replicate the key empirical work in this section with

the original non-detrended health index, and report the results in Appendix A.4. I

find that my results are robust to using a non-detrended index.

I test for stationarity, and find that at least a significant proportion of the series

is stationary. I use the Born and Breitung (2016) test for panel series correlation, as

it is designed to be robust to fixed effects and heteroskedasticity. A non-stationary

pure random walk model would result in the autocorrelation of differenced health

with its second (and higher) lag to be zero, which is not what we observe. Instead,

this pattern of gradually decreasing autocorrelation in first differences is consistent

with a persistent autoregressive process or a MA(q) process with a large q.‡

In general, the literature finds mixed evidence of health following a random walk

process as opposed to a highly persistent one. Blundell et al. (2020) do find evidence

of a random walk, while Blundell et al. (2016) estimate the coefficient on the first

lag of health to be 0.9-1.1 depending on the sub-sample used, and Heiss, Venti and

Wise (2014) estimate an overall coefficient of 0.9. Whether papers model health as

highly persistent or permanent processes likely reflects sample selection or health in-

dex construction. For example, the use of a dataset such as ELSA or Health and

Retirement Study (HRS) that only includes older individuals will have a higher pro-

portion of highly-persistent health shocks compared to a more representative sample

by age, which will contain a higher proportion of less-persistent health shocks such

as changes in mental health index scores. There are also different ways to construct

health indices, and some may place more weight on more permanent health indicators

‡It is also interesting to note that the sign of the LM(k) test statistic in levels swaps from positive
to negative from lag 4, indicating that health indices are positively correlated over short periods but
negatively correlated over long periods. This is inconsistent with an ARMA(1,1) process, and could
be explained by a combination of mean reversion and sample attrition. For example, an individual
in poor health in period t is likely to also be in poor health in period t+1 or period t+2 but recovers
by period t+4 or attrits from the sample
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Table 5: Born and Breitung test for panel series correlation

levels first difference
LM(k)-stat* p-value LM(k)-stat p-value

lag 1 36.30 0.000 -44.24 0.000
lag 2 24.63 0.000 8.36 0.000
lag 3 8.09 0.000 9.20 0.000
lag 4 -14.10 0.000 7.69 0.000
lag 5 -25.87 0.000 3.16 0.002
lag 6 -23.97 0.000 8.52 0.000
lag 7 -25.21 0.000 2.87 0.004
lag 8 -24.45 0.000 1.82 0.068
lag 9 -20.21 0.000 1.90 0.057
lag 10 -15.72 0.000 -1.22 0.224
*LM(k) test statistic is a modified t test of ζ = −1/(T − 1). ζ from equation

hit − hi = ζ(hi,t−k − hi) + ϵit. k is the lag order being tested

such as disability diagnoses compared to indicators of temporary health conditions

such as infectious disease history or mental health indexes. Blundell et al. (2020)

used ELSA data and constructed a health index that emphasised disability indica-

tors, therefore it is unsurprising that they find evidence of a random walk.

I begin by estimating an AR(p) model using OLS with various values of p and

no accounting for fixed effects, reported in Table 6.§ The OLS estimates indicate

that health is highly persistent, with the sum of coefficients on the lagged health

terms consistently around 0.9. A major concern of using OLS is that the coefficient

estimates may be spuriously high due to the presence of fixed effects. I strip them out

using first differencing and avoid the resultant Nickell bias by using GMM estimation

techniques. I use the Arellano-Bond ‘Difference GMM’ estimator which mitigates

Nickell bias by instrumenting the lagged dependent variable terms with further lagged

terms in levels. I re-estimate the AR(p) model now accounting for fixed effects, and

adopting the following specifications which are selected to be conservative and robust:

two-step estimator, time dummies, robust standard errors clustered at the individual

level and an ’unadjusted’ initial weighting matrix. I include the Windmeijer correction

to correct for the usually negative bias in finite samples when the two-step estimator

is used (Windmeijer, 2005). To prevent over-proliferation of instruments, I ‘collapse’

§The sample size for the OLS and GMM estimations differ as the latter typically requires a
higher t (additional lags) to generate the moment conditions
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the instrument set and only include instruments based on the first to fifth lag of the

variable being instrumented. My results are robust to various alternate specifications

such as forward orthogonal deviations and different weighting matrices. I report

the results of this exercise in Table 7. The MA(0) and MA(1) specifications indicate

whether I allow the first lag (hi,t−2) to be used as an instrument in the first-differenced

equations, which is a valid instrument if the errors follow an MA(0) but not MA(1)

process.

Table 6: OLS estimates of the health process as AR(p) model

(1) (2) (3) (4) (5) (6) (7) (8)
L1.health 0.850∗∗∗ 0.602∗∗∗ 0.535∗∗∗ 0.503∗∗∗ 0.485∗∗∗ 0.470∗∗∗ 0.469∗∗∗ 0.454∗∗∗

(382.52) (165.76) (117.42) (96.94) (82.66) (70.34) (62.31) (49.62)

L2.health 0.300∗∗∗ 0.244∗∗∗ 0.221∗∗∗ 0.213∗∗∗ 0.197∗∗∗ 0.203∗∗∗ 0.208∗∗∗

(81.97) (47.88) (38.65) (32.27) (27.06) (25.85) (22.96)

L3.health 0.135∗∗∗ 0.108∗∗∗ 0.0938∗∗∗ 0.0825∗∗∗ 0.0878∗∗∗ 0.0922∗∗∗

(32.11) (18.63) (13.57) (10.67) (10.23) (9.33)

L4.health 0.0801∗∗∗ 0.0646∗∗∗ 0.0613∗∗∗ 0.0646∗∗∗ 0.0643∗∗∗

(16.43) (9.61) (7.75) (7.15) (6.23)

L5.health 0.0533∗∗∗ 0.0350∗∗∗ 0.0352∗∗∗ 0.0423∗∗∗

(8.93) (4.29) (3.79) (3.89)

L6.health 0.0592∗∗∗ 0.0335∗∗∗ 0.0351∗∗

(8.45) (3.55) (2.99)

L7.health 0.0176∗ -0.00891
(2.17) (-0.73)

L8.health 0.0149
(1.48)

Observations* 228,886 182,016 146,353 117,013 89,994 69,512 52,415 37,934

Standard errors in parentheses; clustered standard errors, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7: Difference-GMM estimates of the health process as an AR(p) model

AR(1) AR(2) AR(3) AR(4) AR(5)
MA(0) MA(1) MA(0) MA(1) MA(0) MA(1) MA(0) MA(1) MA(0) MA(1)

L1.health 0.241∗∗∗ 0.944∗∗∗ 0.478∗∗∗ 0.971∗∗∗ 0.571∗∗∗ 1.008∗∗∗ 0.574∗∗∗ 1.184∗∗∗ 0.614∗∗∗ 0.979∗∗∗

(0.00949) (0.0342) (0.0152) (0.0528) (0.0196) (0.0991) (0.0235) (0.156) (0.0281) (0.134)

L2.health 0.147∗∗∗ -0.0106 0.203∗∗∗ -0.0453 0.223∗∗∗ -0.190 0.241∗∗∗ -0.00671
(0.00748) (0.0186) (0.0101) (0.0560) (0.0125) (0.103) (0.0154) (0.0888)

L3.health 0.0681∗∗∗ -0.0101 0.0871∗∗∗ -0.0605 0.0916∗∗∗ -0.00324
(0.00678) (0.0195) (0.00861) (0.0375) (0.0106) (0.0352)

L4.health 0.0351∗∗∗ -0.0170 0.0380∗∗∗ -0.00104
(0.00688) (0.0158) (0.00894) (0.0169)

L5.health 0.00398 -0.00925
(0.00850) (0.0106)

AB test, order 1, z score -60.29 -31.22 -51.10 -18.73 -45.02 -9.10 -38.71 -6.38 -34.47 -6.14
AB test, order 1, p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AB test, order 2, z score 11.19 16.04 -1.79 9.89 2.00 4.58 -1.28 3.68 -2.32 2.64
AB test, order 2, p value 0.000 0.000 0.075 0.000 0.045 0.000 0.199 0.000 0.020 0.008
AB test, order 3, z score -1.92 0.06 4.42 -0.47 -1.91 -0.54 0.75 0.66 2.65 2.49
AB test, order 3, p value 0.056 0.955 0.000 0.637 0.056 0.589 0.456 0.508 0.008 0.013
Hansen J test stat 550.65 0.91 127.31 2.51 35.64 6.83 28.25 5.51 20.60 10.99
Hansen J test p value 0.000 0.823 0.000 0.473 0.000 0.078 0.000 0.138 0.000 0.012
Moment conditions 16 15 16 15 16 15 16 15 16 15
Observations 222,095 222,095 184,734 184,734 151,622 151,622 121,698 121,698 94,513 94,513

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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These results strongly suggest that an ARMA(1,1) model best suits the data. All

MA(0) specifications that include instruments based on the immediately preceding lag

result in a strong rejection of the null of the Hansen J test, indicating that the model

is wrongly specified. However, excluding this instrument, which the MA(1) specifica-

tions do, is typically sufficient to change the result of this test and fail to reject the

null. For example, excluding hi,t−2 as an instrument for ∆hi,t−1 and only using hi,t−3

and earlier lags leads to the non-rejection of the null. This strongly suggests that the

errors follow an MA(1) process. Crucially, the Arellano-Bond autocorrelation tests

also identify autocorrelation only up to the second order in most specifications. For

all MA(1) specifications (except AR(5)), I find no evidence for third-order autocorre-

lation in the error terms, which is the key requirement for validity of the instruments

used if I allow for the error component to follow a MA(1) process. In addition, when

I exclude the first lag as an instrument, the point estimate of the coefficient on the

first lag of health is much higher at around unity while the coefficients on all the

subsequent lags are small and not significant. This suggests that including only one

lag of health is sufficient.

Incorporating some additional moment conditions by using Blundell-Bond ‘System

GMM’ estimation leads to improved ARMA(1,1) estimates. It is well known that the

Arellano-Bond estimator does not function well when persistence is high. At the

limit, if health follows a random walk (ρ1 = 1) then the difference GMM instruments

are uninformative. Blundell and Bond (1998) suggest that there is a risk of serious

finite sample bias at ρ1 values of 0.8 and higher, although they show that the bias is

smaller with very large samples. The System GMM estimator typically performs much

better in these circumstances. The additional moment conditions can also contribute

to more precise coefficient estimation. This is particularly helpful as having to only

use further lags as instruments due to the MA(1) error structure increases the risk of

weak instruments. The additional initial moment restriction of E(εithi1) = 0 that is

required for System GMM estimation is not a particularly onerous restriction for my

data. Blundell and Bond (2023) state that this restriction holds automatically if the

same process has generated the series for long enough before the start of the sample

period. Since my first observation occurs at least 18 years after the the start of the

health process, at birth, this may not be an unreasonable assumption.

Table 8 reports the AR(p) model coefficients estimated using System-GMM and
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allowing for MA(1) errors. Differences between the Difference and System GMM

coefficient estimates are small, although using System GMM leads to much more

precisely estimated coefficients, especially for the first lag. The coefficient estimates

of the first lag are mostly not significantly different for the AR(1) AR(2) and AR(3)

specifications, and the coefficients on additional lags are typically not significant.

Therefore, including only one lag is sufficient to capture the persistence dynamics of

this model.

Table 8: System-GMM estimates of the health process as an AR(p) model

AR(1) AR(2) AR(3) (AR4) (AR5)
MA(1) assumption

L1.health 0.872∗∗∗ 0.901∗∗∗ 1.032∗∗∗ 1.113∗∗∗ 1.149∗∗∗

(0.0123) (0.0310) (0.0790) (0.0864) (0.0980)

L2.health -0.00940 -0.0775 -0.126∗∗ -0.135∗∗

(0.0170) (0.0430) (0.0448) (0.0481)

L3.health -0.0194 -0.0361 -0.0432∗

(0.0166) (0.0199) (0.0217)

L4.health -0.0160 -0.0115
(0.00844) (0.0116)

L5.health 0.00608
(0.00720)

AB test, order 1 z score -53.86 -26.25 -11.81 -11.8 -10.78
AB test, order 1 p value 0.000 0.000 0.000 0.000 0.000
AB test, order 2 z score 19.19 12.69 6.27 6.88 6.32
AB test, order 2 p value 0.000 0.000 0.000 0.000 0.000
AB test, order 3 z score 0.032 -0.54 -0.39 0.08 1.75
AB test, order 3 p value 0.974 0.588 0.693 0.935 0.080
AB test, order 4 z score 0.867 0.54 -0.16 -0.36 -1.32
AB test, order 4 p value 0.386 0.592 0.871 0.721 0.188
Hansen J test stat 6.42 8.259 8.109 11.27 35.24
Hansen test p value 0.170 0.143 0.23 0.127 0.000
Moment conditions 16 17 18 19 20
Observations 222,095 184,734 151,622 121,698 94,513

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

I conclude that the best single-equation linear specification to capture the health

process is the following ARMA(1,1) that accounts for fixed effects:

hit = 0.87hi,t−1 − 0.33εi,t−1 + ηi + εit (2)

Since the AR term has already been estimated as 0.87, I estimate that the co-
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efficient on the MA(1) term (θ) is -0.33 by re-arranging the ARMA(1,1) model as:

hit−0.87hi,t−1 = h̃it = ηi++θεi,t−1+εit. This is now a simple MA(1) process that can

be estimated using GMM. I use the following three variance and covariance moments

and report the coefficient estimates in Table 9:

Var(h̃it) = Eη2i + (1 + θ2)Eε2

Cov(h̃it, ˜hi,t−1) = Eη2i + θEε2 Cov(h̃it, ˜hi,t−2) = Eη2i

Table 9: GMM estimates of MA(1) process

ρ =0.87

ηi 0.0380∗∗∗

(0.00285)

θ -0.334∗∗∗

(0.00593)

εit 0.335∗∗∗

(0.00125)
Observations 222,095

The reported estimates in this table refer to the variance of the error components ηi and εit
Standard errors in parentheses,∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

As a robustness exercise, I check whether there are large subgroups with health

dynamics that are better captured by a different linear model. If this were the case,

describing the health dynamics of the entire sample using a single ARMA(1,1) model

may be misleading. I use the Sarafidis and Weber (2015) K-means clustering algo-

rithm to divide the sample into as many clusters as required for the estimated slope

coefficients of an AR(1) model to be the same within each cluster, accounting for

individual-specific fixed effects. The algorithm divides my sample into two groups,

containing 40 and 60 per cent of the sample respectively. This suggests that only two

groups are needed to capture any heterogeneity in model coefficients. I then estimate

AR(p) models separately for each group using GMM, re-assessing whether including

one lag is sufficient and whether the error structure follows an MA(1) process. The

regression tables are reported in Appendix A.5, as well as some summary statistics

for each group. I determine that the models for the two groups that best fit the data

are an AR(2) and ARMA(1,1) respectively.
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Group 1: hit = 0.79hi,t−1 + 0.09hi,t−2 + ηi + εit

Group 2: hit = 0.83hi,t−1 − 0.54εi,t−1 + ηi + εit

The two models are quite similar. Both capture that health is a highly persistent

process, and have an additional term that helps distinguish between highly-persistent

health shocks such as chronic health conditions, and transitory health shocks. I

conclude that an ARMA(1,1) model is sufficient to describe the entire sample and

slope heterogeneity is not a significant concern.

4.2 Linear additive shock model

I conclude this section with estimating a slightly different model that allows for

more flexibility in capturing shock persistence, but at the expense of imposing other

restrictions. A specification used very commonly in the earnings dynamics literature,

and sometimes in the health dynamics literature, relaxes the restriction of individuals

being subject to only one type of shock. Instead, the variable is modelled as the sum

of two independent random processes: a permanent shock process which is typically

a random walk, and a transitory process which is either an MA(0) or MA(1):

yit = pit + υit

permanent process: pit = pi,t−1 + ζit

transitory process: υit = εit − θεi,t−1

An additive classical measurement error rit ∼ N(0, σ2
r) can also be included. This

clear distinction between permanent and transitory shocks reflects the influence of

Friedman’s Permanent Income Hypothesis on earnings dynamics research, but it is

also conceptually attractive as researchers can cleanly classify most income shocks

as either temporary, such as overtime or one-off-bonuses, or permanent, such as a

job change (Meghir and Pistaferri, 2004). A similar intuition for health shocks being

divided into permanent shocks such as a physical disability and temporary shocks

such as some mental health episodes is compelling, and adopted in papers such as

Blundell et al. (2020) and Blundell et al. (2016).
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The canonical moment conditions used to estimate these models require that the

permanent process is a random walk to achieve identification. This is a strong as-

sumption for my data. It is challenging to distinguish between highly persistent and

random walk processes in small-T panel data with significant individual heterogene-

ity, and I cannot reject that the coefficient on the lagged health term is 1 in many

of the ARMA(p,q) models I estimated using GMM. However, my serial correlation

tests do indicate that a reasonable proportion of the data are best characterised as

following a persistent process rather than a random walk. It is also unclear how

robust the resulting coefficient estimates are to small violations of the random walk

assumption implied by the moment conditions. Proceeding with caution, I use the

following moment conditions to estimate health as the sum of a permanent walk and

MA(1) transitory process. Letting git be a change in hit (equivalent to hi,t−hi,t−1) we

can identify the variance of the permanent component using the following moment

condition from Meghir and Pistaferri (2004):

E(ζ2it) = E

git
 1+q∑

j=−(1+q)

gi,t+j


. Since we cannot separately identify the variance of any measurement error, the

variance of the transitory shock, and θ, we can only use the moment conditions to

place bounds on these coefficients with the following moment conditions:

σ2
r = E(git, gi,t−1)−

(1 + θ)2

θ
E(git, gi,t−2)

σ2
ε =

E(git, gi,t−2)

θ

By setting σ2
r to zero we can estimate the lower or upper bound of θ, which we

assume is bounded between -1 and 1. The sign of E(git, gi,t−2) defines the sign of θ.

In my case it is negative, therefore the maximum value of θ is the case where σ2
r = 0.

I use these moment conditions to estimate the variance of the two shocks, as well

as the coefficients of the MA(1) transitory process. These estimates are reported in

Table 10. My estimates of the magnitude of the variances of the two shocks are quite

similar to the findings of Blundell et al. (2016), although they do not find evidence

of a MA(1) transitory process. Blundell et al. (2020) obtain quite different results
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and argue that transitory and permanent shocks contribute fairly equally to health

variance. However, they use a very different estimation strategy and do not use these

canonical moments from the earning dynamics literature.

Table 10: Coefficient estimates of linear additive shock model

variable estimate

E(ζ2it) 0.155***

(47.26)

σ2
ε if σ2

r = 0 0.050***

(40.89)

θ if σ2
r = 0 (upper bound) -0.072***

(-6.42)

t statistics in parentheses, *p<0.05, *p<0.01, *p<0.001

If transitory shocks do not explain much variation of the overall health process,

then using an ARMA(p,q) model that only allows for one type of shock is sufficient.

My results suggest that the permanent process is responsible for the majority of the

variance in the health process over time, although the transitory process does make

some contribution. In addition, the ARMA(p,q) model does not require the persistent

shock to follow a random walk. I conclude that the ARMA(p,q) model is a superior

fit for my data.

I further consider the limitations of these two models in the next chapter, and

suggest some improvements.
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5 Capturing more complex dynamics

The two linear health models estimated in the previous section are simple to use

and incorporate into more complex structural models. However, there is a cost to

their simplicity. Since the baseline ARMA(p,q) model attempts to capture the aver-

age persistence of a health shock, it imposes uniformity of persistence on shocks of

different sizes, for positive and negative health shocks, and for individuals with very

different levels of health and health histories pre-shock. I find evidence of significant

heterogeneity in persistence once I allow persistence to vary by these characteris-

tics. Simple extensions of the ARMA(p,q) baseline model can capture some of this

variation, however we can make further progress with more sophisticated modelling

approaches, which I discuss in the subsequent chapter. In addition, I do not need

to assume stationarity or that the error terms follow a white noise process for my

ARMA(p,q) coefficient estimates to be valid. However, I document some features of

the error distributions that are important to capture when modelling the heterogene-

ity in health shock risk that individuals face. I show that biomarker data can be used

to capture some of the elevated negative health shock risk faced by some individuals.

This section focusses on the ARMA(1,1) model as my preferred linear model, but

most of the limitations I identify can also be applied to the linear additive shock

model. De Nardi, Fella and Paz-Pardo (2019) provide a good summary of the key

limitations of this model when applied to earnings data which are equally valid when

using health data. They key model assumptions they identify that do not match

the data are: age independence of the second and higher moments of the conditional

distribution of both the transitory and persistent components, normality of the shock

distribution, and linearity of the process of the persistent component.

5.1 Recent health history

The average persistence of a health shock varies significantly depending on the

health history of the individual prior to the shock taking place. This makes intuitive

sense; someone’s capacity to recover from an illness is a function of how healthy

they were just prior to getting sick. The MA term in an ARMA(1,1) model takes into

account the size of the shock last period, but there is significant additional persistence

information in the level of health. The simplest way to capture this would be to add
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an interaction term to the baseline ARMA(1,1) model that assigns individuals to a

quintile of their health just before the shock, and interact it with the lagged health

term, which I report in Table 11.

Table 11: ARMA(1,1) model with interaction dummy for lagged health level quintile

Difference-GMM System-GMM

Q1 - lagged health index 0.966∗∗∗ 0.923∗∗∗

(0.0697) (0.0163)

Q2 - lagged health index 1.102∗∗∗ 0.910∗∗∗

(0.159) (0.104)

Q3 - lagged health index 0.754∗∗∗ 0.665∗∗∗

(0.100) (0.0719)

Q4 - lagged health index 0.901∗∗∗ 0.829∗∗∗

(0.0569) (0.0433)

Q5 - lagged health index 0.871∗∗∗ 0.868∗∗∗

(0.0349) (0.0260)

AB test, order 1 z score -24.76 -56.093

AB test, order 1 p value 0.000 0.000

AB test, order 2 z score 14.3 20.835

AB test, order 2 p value 0.000 0.000

AB test, order 3 z score 0.0567 0.0915

AB test, order 3 p value 0.9548 0.927

Hansen J test stat 25.925 67.035

Hansen J test p value 0.0388 0.000

Observations 222,095 222,095

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

GMM estimation specifications identical to those used in baseline model in section 4

This exercise of relaxing the restriction that the autoregressive parameter is com-

mon across quintiles of the lagged health index suggests that persistence is the highest

for those with prior bad health, and lowest for those with prior average health. How-

ever, these results should be taken with extreme caution as the Hansen test strongly

rejects the validity of the over-identifying restrictions used by both the Difference-

GMM and System-GMM estimators. This approach also is unable to allow coefficients

to depend on the sign or magnitude of the health shock between periods t − 1 and
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t. I adopt more complex econometric techniques in a later section of this chapter to

capture this heterogeneity in the persistence of health shocks.

As well as the relationship between recent health history and persistence, there

is also a relationship between recent health history and the expected distribution

of future health shocks. This is difficult to capture in a simple linear model but

is an important component of health risk to capture. To illustrate the relationship

between past health and the expected distribution of health shocks, I graph the higher

moments of the health index (variance, skewness, and kurtosis) as a function of that

individual’s health percentile in the previous period, where 1 is the bottom health

percentile of all individuals and 99 is the highest health percentile in Figure 5. The

variance depicted in the top panel is calculated separately for the subset of individuals

who experienced a ‘positive health shock’, meaning their reported health improved

between the current and immediately prior period, and those who suffered a negative

health shock, which is defined as the opposite.

I find that variance, skewness, and kurtosis all systematically vary by health the

previous period. Notably, those in poor health have more volatile health in subsequent

periods, with increased risk of both large negative and positive changes to their health

relative to those in good or average health. This elevated risk is difficult to capture

using simple linear models. One plausible way of capturing this feature of the data, is

estimating an autoregressive conditional heteroskedasticity (ARCH) model. ARCH

models are able to capture differences in variance depending on the size of the error

term in the previous period. For example, a large shock in period t − 1 may mean

a large shock is more likely in period t. Figure 6 compares the histograms of health

changes between period t − 1 and t for those who experienced a greater than one

standard deviation change in health in the prior period (between t − 2 and t − 1)

to those who did not. It shows that large changes in health is associated with more

volatile health next period, and that, on average, a large negative health shock is

associated with an improvement in health next period, and the opposite holds for

those who experienced a positive health shock in the prior period. Interestingly, the

distribution of health changes for those who experienced large positive or negative

shocks in the prior period is closer to a normal distribution than the distribution of

health changes of those who experienced neither. For this group, there is very little

mass in the tails as stable health in the past is correlated with stable health in the
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next period.

Figure 5

x-axis is individual’s health percentile in the previous period, where (99=highest health
percentile. y-axis is units of higher moment being graphed
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Figure 6

I assess this relationship between errors and variance more formally by estimating

an ARCH(1) model with the following specification for health variance: exp(γ0 +

γ1ε
2
i,t−1 + γ2εi,t−1). The γ2 term accounts for possible heterogeneity between positive

and negative shocks. I describe my estimation procedure in Appendix A.6, but I do

not find any evidence that γ1 or γ2 ̸= 0, and therefore do not find evidence of ARCH

effects in my data. However, this specification only models the relationship between

shock magnitude in two consecutive periods. I do find evidence that individuals who

experience a large negative health shock are more likely to experience another large

negative health shock in subsequent years. However, a majority of these later shocks

occur several years afterwards, which cannot be captured in an ARCH(1) model and

requires a more complex econometric approach. Table 12 reports the number of

large negative shocks, defined as at least one standard deviation fall in the detrended

health index, experienced by those of different ages in the sample. Conditional on

experiencing one negative shock, individuals are more likely to experience a second.

For example, those aged 20-29 at the beginning of the sample period have a 16 per

cent chance of experiencing a negative shock in the next decade, but 28 per cent
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of those who experienced one negative shock experienced a second negative shock,

with an average gap between shocks of four years. The average gap between negative

health shocks rises with age.

Table 12: Number of large negative shocks over 10 years, population share by age†

Age in first wave 0 shocks 1 shock 2+ shocks average yrs b/tween shocks

20-29 0.801 0.155 0.044 3.5

30-39 0.784 0.169 0.047 3.7

40-49 0.744 0.198 0.058 4.2

50-59 0.722 0.222 0.056 4.4

60-69 0.704 0.242 0.054 4.6

70-79 0.610 0.300 0.090 4.5

†shocks of at least one standard deviation

5.2 Age and model stationarity

A different source of heterogeneity in persistence and shock distribution is age of

the individual. Age is closely related to the statistical property of stationarity. Since

the time dimension of my panel data is fairly short, stationarity is difficult to assess.

However, the ARMA(1,1) process I estimated is stationary in the long run, provided

that ρ + θ ̸= 0, ρ < |1|, and some not particularly onerous restrictions are imposed

on the distribution of εit. Stationarity implies that the moments of the data are age

independent. For the first moment, this is mechanically achieved by detrending the

health index by age and age polynomials. However, higher moments of the detrended

health data are not age-independent. Figure 7 shows the second, third and fourth

moments of the detrended health data by age. Older individuals are more likely to

experience health shocks, and so the standard deviation of the health index increases

with age. The distribution of the detrended health index of older people is less

negatively skewed, reflecting their increased propensity to experience positive health

shocks. Young people are much less likely to experience positive health shocks as

their health is typically good and so cannot be improved further. The health index

distribution for young people is platykurtic and so extreme health changes are rarer,
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while the kurtosis for older people is close to a normal distribution. Higher moments

do systematically vary by age, which should be captured in life-cycle models or models

that consider the long-term impacts of health shocks on economic outcomes. This

can be achieved by imposing a shock sequence that is a function of age rather than

assuming a normal distribution for the error term. The ARMA(1,1) coefficients I

estimate using GMM are robust to conditional heteroskedasticity and the patterns of

kurtosis and skewness I identify. Assuming mean-zero errors and no serial correlation

of the errors is sufficient for this to be the case (Arellano and Bond, 1991). However,

higher moments are an important component of capturing the health risk people face.

Figure 7
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5.3 Underlying health

I conclude with considering how allostatic scores can be used as an additional data

source to improve the performance of linear health dynamics models. I find that

the main informational content of allostatic scores relates to the likelihood of a large

negative health shock in the future. In addition, I find that allostatic scores do not

help predict the persistence of already realised health shocks (see Appendix A.7 for

further details).

The ARMA(1,1) model has the worst performance when predicting the health of

individuals with poor allostatic scores. Figure 8 shows the average difference between

the level of health predicted in period t using my preferred ARMA(1,1) model as es-

timated using System GMM (see section 4.1 for further details), and actual health in

period t by allostatic score vigintile. These are the residuals for the health equations

in levels, averaged for each allostatic score vigintile. The biggest forecast misses oc-

curs for the population with the worst 10 per cent of allostatic scores, indicating very

poor underlying health. If someone is in average health in period t − 1 but has bad

underlying health, they are much more likely to be hit by a large negative shock in

period t. In these cases, the ARMA(1,1) model performs the most poorly and signifi-

cantly overestimates their level of health. This result is in line with previous research

that finds that biomarker data can predict future negative health outcomes among

ostensibly healthy people (Davillas and Pudney, 2020c). This increased propensity

to experience a large negative health shock is an important source of risk to capture

in models of health dynamics.
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Figure 8

6 Non-linear health dynamics

The complex dynamics of health, as described in the prior sections, can be better

understood by adapting the latest panel data techniques. I estimate the health pro-

cess using a non-linear panel data framework developed by Arellano, Blundell and

Bonhomme (2017). This method is from the earnings literature, although it has been

applied to a small number of non-earnings contexts, such as non-linear productivity

and investment dynamics in firms (Melcangi and Sarpietro, 2024).¶ A major attrac-

tion of this method is that it allows for heterogeneity in persistence to depend on the

size and direction of the health shock that occurs in period t. This is not possible

to do using the methods used to estimate the ARMA(p,q) models due to the fun-

damental endogeneity between the shock in period t and the persistence estimates

that relate health in period t − 1 to health in period t. This framework also allows

persistence estimates to vary by the level of health in period t− 1, which I previously

showed can have a large impact on persistence estimates.

Adapting the Arellano, Blundell and Bonhomme (2017) framework to a health

context produces persistence estimates that range from 0.6 to 1.2. While the linear

¶Dal Bianco and Moro (2022) have written a working paper concurrent to this one that also
applies this framework to a health context
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methods from the prior section produce persistence estimates around the midpoint

of these estimates, this range is large enough to have meaningful implications for

economic decision making. People faced with a health shock with persistence at the

lower end of this range are likely to behave quite differently to those facing a much

more persistent health shock. I also document some interesting patterns in how

persistence estimates vary depending on whether the shock at period t is positive

or negative, the magnitude of the shock, and the level of health immediately prior

to the shock. I find that negative health shocks are more persistent than positive

health shocks, and that negative health shocks are more persistent if someone was

in poor health prior to the shock. I also estimate an additional model that includes

fixed effects as an additional source of heterogeneity. Accounting for fixed effects

does reduce the persistence estimates a little, especially for those in poor health who

experience large negative shocks. I find some evidence that the size and sign of the

fixed effect is correlated with allostatic scores which helps us understand the variation

captured by the fixed effect. I conclude this section by extending this method to

better capturing the complex dynamics of other health indicators by estimating the

non-linear persistence of an index of mental health.

6.1 Non-linear persistence estimates of overall health

The non-linear framework of Arellano, Blundell and Bonhomme (2017) models

their variable of interest as the sum of a persistent component (ηit) and a transitory

innovation (εit). The linear model estimated in the previous section as also the sum

of a permanent component and transitory innovation can be considered a special,

highly-restrictive case of Arellano, Blundell and Bonhomme (2017)’s framework. The

persistent component is assumed to follow a general first-order Markov process, and

so the ηit terms are dependent over time, although the nature of their dependence does

not need to be specified, allowing for flexible temporal dynamics. The τth conditional

quantile (τ ∈ (0, 1)) of this persistent component, given ηit−1, is Qt(ηit−1, τ). υit is

then defined as a random process such that:

ηit = Qt(ηi,t−1υit), where (υit|ηi,t−1, ηi,t−2 . . .) ∼ Uniform(0,1)
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. The quantile function maps draws of υit from a uniform distribution into quantile

draws for the persistent component. The transitory component εit is assumed to

be mean-zero, independent over time, and independent of ηi,t−s for all s, and is

assumed to also include any measurement error. This method allows for general

forms of heteroskedasticity, conditional skewness and kurtosis in ηit. A caveat to this

specification is that it excludes the possibility for the transitory component to follow

an MA(1) process, which I do find some evidence for when estimating the baseline

models. The t subscript refers to age. The permanent and transitory components are

assumed to be mean-independent of age t, but the conditional quantile functions and

marginal distributions of the transitory component may all depend on t. Non-linear

persistence (ρt) of the persistent component can then be defined as:

ρt(ηi,t−1, τ) =
∂Qt(ηit−1, τ)

∂η
, ρt(τ) = E

∂Qt(ηit−1, τ)

∂η

δQt/δη is the partial derivative of Qt with respect to its first argument, and the

expectation is taken with respect to the distribution of ηt−1. This approach estimates

persistence as the derivative effect of how much the persistent component of earnings

in period t varies with the persistent component of earnings in period t− 1 when hit

with a shock in period t. I estimate ρt(ηi,t−1τ) of the health process, which is the

persistence of ηi,t−1 when hit by shock υit with rank τ .

A major attraction of this method is that it allows for one shock (such as a very

large or small realisation of υit) to wipe out the memory of past shocks. This incor-

porates an important additional source of heterogeneity in health shock persistence

that is unavailable in the simple linear models. This allows, for example, a big nega-

tive shock in period t, such as a sudden permanent severe disability, to wipe out the

persistence of past shocks. By contrast, the ARMA(p,q) and simple linear additive

shock models cannot allow ρ to vary by any features of the shock that occurs in pe-

riod t. Despite its computational complexity, the method is easy to use as Arellano,

Blundell and Bonhomme (2017) make available full MATLAB replication files.‖ Fur-

thermore, De Nardi, Fella and Paz-Pardo (2019) propose a simulation-based method

to discretize nonlinear and non-normal stochastic processes, so that these estimates

‖All replication files and supplementary material can be downloaded from: https://

onlinelibrary.wiley.com/doi/abs/10.3982/ECTA13795
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can be incorporated into a life-cycle model with minimal state-space cost.

To estimate the model, the quantile functions for εit, ηi1 and ηit are first pa-

rameterised as low order Hermite polynomials. Since the persistent and transitory

components of the process are not seperately observable, the estimation algorithm

begins with an initial guess for the coefficients and then iterates sequentially between

draws from the posterior distribution of the latent persistent component and quantile

regression estimation until convergence is achieved. The algorithm used is closely

related to the stochastic EM algorithm (Diebolt and Celeux, 1993), although the

quantile specification of the model avoids the need for a likelihood-based approach to

estimation.

I apply this method to estimating the persistence of health, and report the results

in Figure 9 and Table 13 by deciles for the magnitude of the shock at period t and

health decile in period t-1. Since the health index has been de-meaned by age, the

health shocks are approximately symmetric, so the lowest decile consists of large

negative health shocks, the median decile consists of very small health shocks or

unchanged health, and the highest decile consists of very large positive shocks. I

report both the persistence estimates for the overall health process, and just the

persistent component ηit, which strips out the transitory component from the overall

estimates. The persistent-component-only estimates are on average higher, with two

notable exceptions; large positive shocks experienced by those in poor prior health,

and large negative shocks experienced by those in prior good health. Transitory

shocks are likely to be more important in these cases.

I find that persistence of health shocks varies greatly, depending on past health,

shock size and sign. While the average of my estimates is approximately the estimate

of persistence from my baseline models, my non-linear persistence estimates range

from 0.6 to 1.2. Such variation has significant implications for economic decision

making. Furthermore, there is a large difference in the persistence of positive health

shocks and negative health shocks. Large negative health shocks are almost twice

as persistent as large positive health shocks. Another notable result is that those in

poorer health pre-shock take much longer to recover from a negative shock relative

to those in better health pre-shock. Individuals who are both in poor health in

period t − 1 and then experience a large negative health shock in period t have an

estimated persistence coefficient of 1 or more, suggesting that a negative shock is
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Table 13: Non-linear health persistence estimates

Shock size percentiles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
Overall health persistence

1 1.16 1.10 1.05 1.01 0.97 0.94 0.90 0.86 0.82 0.76 0.67
2 1.13 1.06 1.01 0.98 0.94 0.91 0.87 0.83 0.79 0.73 0.65
3 1.08 1.02 0.98 0.94 0.91 0.88 0.85 0.81 0.78 0.72 0.64
4 1.05 0.99 0.95 0.92 0.89 0.86 0.83 0.80 0.77 0.71 0.64
5 1.02 0.96 0.93 0.90 0.87 0.85 0.82 0.79 0.76 0.71 0.64
6 0.99 0.93 0.90 0.88 0.86 0.83 0.81 0.78 0.75 0.71 0.64
7 0.96 0.91 0.88 0.86 0.84 0.82 0.80 0.78 0.74 0.71 0.65
8 0.93 0.88 0.86 0.84 0.82 0.81 0.79 0.77 0.74 0.70 0.65
9 0.90 0.85 0.83 0.82 0.80 0.79 0.78 0.76 0.73 0.70 0.65
10 0.87 0.82 0.80 0.79 0.78 0.78 0.76 0.75 0.73 0.70 0.66
11 0.81 0.77 0.76 0.75 0.75 0.75 0.74 0.74 0.72 0.70 0.66

Persistent component of health shocks

1 1.45 1.25 1.17 1.11 1.06 1.02 0.98 0.92 0.86 0.77 0.56
2 1.37 1.21 1.15 1.09 1.05 1.01 0.98 0.93 0.87 0.80 0.62
3 1.28 1.15 1.11 1.06 1.03 1.00 0.96 0.92 0.88 0.81 0.67
4 1.21 1.10 1.07 1.03 1.01 0.98 0.95 0.92 0.88 0.83 0.71
5 1.14 1.05 1.03 1.00 0.99 0.97 0.94 0.91 0.88 0.84 0.74
6 1.08 1.01 1.00 0.98 0.97 0.95 0.93 0.91 0.88 0.84 0.77
7 1.02 0.97 0.97 0.95 0.95 0.94 0.92 0.90 0.88 0.85 0.79
8 0.96 0.93 0.94 0.93 0.93 0.92 0.91 0.90 0.88 0.86 0.82
9 0.89 0.89 0.91 0.90 0.91 0.91 0.90 0.89 0.88 0.87 0.85
10 0.81 0.83 0.86 0.86 0.88 0.89 0.88 0.89 0.88 0.88 0.89
11 0.68 0.74 0.79 0.80 0.84 0.85 0.86 0.87 0.88 0.89 0.95

*1=most negative, 11=most positive

44



Figure 9: Non-linear persistence estimates

(a) Health (ηit + εit) (b) Persistent component only (ηit)

likely to be permanent for these individuals. By comparison, an ARMA(p,q) model

will underestimate the persistence of a large negative health shock and overestimate

the pace and magnitude of recovery, especially for those in poor past health.

6.2 Fixed effects

These non-linear persistence estimates demonstrate the crucial importance of al-

lowing for heterogeneity in health shock features and health history when estimat-

ing persistence. Time-invariant, individual fixed effects are an additional important

source of heterogeneity, and not accounting for them may bias the persistence esti-

mates upwards. The literature also emphasises the importance of individual hetero-

geneity, such as initial conditions from childhood, education, or generic variation, as

potentially more important than state dependence in determining health outcomes

(Halliday, 2008). I re-estimate persistence allowing for fixed effects by using an ex-

tension to the Arellano, Blundell and Bonhomme (2017) framework included in their

supplementary appendix. I find that accounting for fixed effects does reduce the per-

sistence estimates, and the magnitude of the reduction varies by past health and shock

magnitude. The reductions are largest for those in prior poor health who experience

a large negative health shock. Therefore, the extremely high persistence previously

observed for this group partially reflects fixed effects, although the new persistence
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estimates remain high. Accounting for fixed effects also removes the asymmetry be-

tween positive and negative shock persistence.

To capture time-invariant fixed effects, the persistent component ηit is now defined

as being equal to Qt(ηi,t−1, ζi, υit) where ζi is the fixed effect. I report the new persis-

tence estimates in Figure 10 and Table 14. The two graphs that make up Figure 10

illustrate the same data, but I rotate the plane around the persistence axis to better

illustrate the range of the persistence estimates.

I report the estimates for the persistent component rather than overall health as

estimates of this component are most likely to be overstated by not accounting for

fixed effects.

Figure 10: Persistent component of health, accounting for fixed effects

Several of the key results from the original non-linear persistence estimates are

unaffected by accounting for fixed effects. The range of the persistence estimates,

depending on past health and characteristics of the shock at period t remain large,

ranging from 0.3 to 1.0 depending on the features of the shock at period t and past

health. Persistence estimates in cases of negative health shocks continue to be much

higher for individuals in poor health, and the opposite is true for positive health

shocks.

On average, the persistence estimates are smaller when fixed effects are taken into

account. This is mostly driven by reductions to the persistence estimates in cases of

negative shocks at period t. The largest reductions are observed for the largest decile
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Table 14: Persistent component of health, accounting for fixed effects

Shock size deciles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
1 1.01 0.99 0.99 0.97 0.92 0.86 0.81 0.72 0.62 0.50 0.34
2 0.96 0.98 0.99 0.99 0.97 0.93 0.90 0.84 0.75 0.66 0.52
3 0.91 0.94 0.96 0.98 0.97 0.95 0.93 0.89 0.82 0.74 0.63
4 0.86 0.90 0.93 0.96 0.96 0.95 0.94 0.91 0.86 0.79 0.70
5 0.81 0.86 0.90 0.93 0.94 0.95 0.95 0.92 0.88 0.83 0.76
6 0.76 0.82 0.86 0.90 0.92 0.93 0.94 0.93 0.90 0.86 0.80
7 0.71 0.78 0.83 0.87 0.89 0.92 0.93 0.93 0.91 0.88 0.84
8 0.66 0.74 0.79 0.83 0.86 0.89 0.91 0.93 0.92 0.90 0.88
9 0.61 0.69 0.74 0.79 0.83 0.87 0.89 0.92 0.92 0.92 0.92
10 0.54 0.62 0.68 0.74 0.78 0.83 0.87 0.90 0.92 0.93 0.97
11 0.41 0.50 0.57 0.63 0.68 0.75 0.80 0.86 0.91 0.95 1.03

*1=most negative, 11=most positive

of negative shocks, where persistence estimates fall by 0.3-0.4. Accounting for fixed

effects has little impact on the persistence estimates when there are positive shocks.

As a result, while the original non-linear estimates were much higher for negative

shocks than positive shocks, this difference disappears when we take fixed effects into

account. Accounting for fixed effects also reduces the persistence estimates for those

in very poor health in t − 1 who experience a positive shock in period t. These

results suggest that those who experience large negative shocks, or have a history

of poor health, are also more likely to have some unobserved time-invariant trait

that subtracts from overall health, such as poor underlying health, and this partially

explains the persistently very poor health we observe after large negative shocks and

among those with poor health in the prior period. This result is not symmetrical for

those who experience positive shocks.

While these fixed effects cannot be observed directly, I do find some evidence that

they are related to allostatic scores. Allostatic scores attempt to measure underlying

health, which may be associated with vulnerability to suffer negative health shocks,

and propensity and speed of recovery from them. I divide my sample into two groups

based on whether allostatic scores are above or below the sample median allostatic

score, and then re-estimate persistence for these two groups (Figure 11). High allo-

static scores indicate poor underlying health while low allostatic scores indicate good
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underlying health. These estimates are for the entire index, rather than just the

persistent sub-component.

Figure 11: Non-linear overall persistence estimates; by allostatic score

(a) High allostatic scores (poor underlying
health)

(b) Low allostatic scores (good underlying
health)

I observe significant differences in the persistence estimates of those with better

and worse allostatic scores. Those with worse underlying health experience more per-

sistent negative health shocks and less persistent positive health shocks. The biggest

difference between them is that the persistence estimates for those who suffered a

large negative health shock but were in good prior health are about 0.5 units lower

than for the group with worse allostatic scores. There are two possible reasons why

these persistence estimates vary by allostatic score. Allostatic scores may be corre-

lated with the persistence of shocks that people experience. For example, those with

worse underlying health may be more vulnerable to highly persistent chronic health

conditions. Alternatively, there may be a high correlation between allostatic scores

and fixed effects. I find that the persistence differences between the higher and lower

allostatic score groups can be significantly reduced if I use the estimation procedure

that takes fixed effects into account. This suggests that these differences mostly re-

flect fixed effects. I show this in Table 15, which reports the difference between the

non-linear persistence estimates that takes fixed effects into account for the groups

with good and bad allostatic scores. I subtract the estimates for the group with bad
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(above average) allostatic scores from the group with good (below average) allostatic

scores; the difference now only ranges from -0.2 and 0.1.

Table 15: Difference between persistent component estimates of poor and good allo-
static health groups, accounting for fixed effects

Shock size deciles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 -0.1
2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1
3 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1
4 0.1 0.0 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
5 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
6 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
7 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.1
8 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.1
9 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.1
10 0.1 -0.1 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1
11 0.2 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1

*1=most negative, 11=most positive

This result strongly suggests that allostatic scores capture some aspect of fixed ef-

fects that are helpful to include when modelling health dynamics. There is significant

scope for further research on modelling these fixed effects and identifying whether

they relate to, for example, education, early childhood experiences, or genetics.

6.3 Mental health persistence

This chapter has focussed on modelling overall health. However, the methods used

in this chapter can be easily applied to other health indices used in the economics

literature, which may have very different persistence profiles. I calculate the per-

sistence of GHQ scores, which are a sub-component of my health index and can be

considered a measure of overall mental health. GHQ (general health questionnaire)

is a questionnaire designed to identify non-psychotic and minor psychiatric disorders

such as anxiety and depression, and provides a mental health score ranging from 1

to 36. I de-trend the raw GHQ scores from age, gender, and time trends, and first

estimate an ARMA(p,q) model as a linear baseline. I find that GHQ scores can be

represented as an ARMA(1,1) model in a similar manner to an overall health index,
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although the level of persistence is lower, with the coefficient on the lagged health

term estimated as 0.7. I report these ARMA estimation results in Appendix table

30.

I then follow the same procedure as above and calculate the non-linear persis-

tence of the mental health index using the Arellano, Blundell and Bonhomme (2017)

framework. I report a table of my persistence estimates by past health shock and

past health decile in Appendix table 31 and illustrate the estimates in Figure 12. The

two graphs show the same data, but I rotate the plane around the persistence axis to

better illustrate the range in the persistence estimates. These estimates are for the

complete mental health index, rather than just the persistent component.

Figure 12: Persistence of mental health index

In some ways, the mental health persistence graphs resemble the overall health per-

sistence graphs. In both cases, the persistence of shocks varies significantly depending

on past health history and magnitude and sign of the shock in period t, outcomes

tend to be worse if the individual is in prior bad health, and negative shocks are

more persistent than positive shocks. However, there are some significant differences,

which may be important to capture when considering the impact of mental health

shocks on economic decision making; the literature on this is very nascent (Jolivet

and Postel-Vinay, 2020; Abramson, Boerma and Tsyvinski, 2024). For those with

good prior mental health, persistence estimates are around 0.5-0.6, and do not vary

much by shock sign or magnitude. However, for those with bad prior mental health,
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persistence estimates have a huge range. Of note, the persistence of very large nega-

tive shocks is over 1, while the persistence of very large positive shocks is around 0.1

This suggests that for individuals already struggling with their mental health, large

improvements are highly transient but any further declines are permanent, suggest-

ing a ‘downward spiral of despair’ mechanism and that the capacity for recovery is

limited.
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7 Conclusion

This chapter investigated how best to model health as a dynamic process. It evalu-

ated the strengths and weaknesses of the most commonly used approaches in the liter-

ature, and adapted recent techniques from the earnings dynamics literature to better

capture some of the complexities around modelling shock persistence, frequency and

magnitude. It also explored how biomarker data can be used to improve our ability

to model health dynamics, although further research in this area is recommended

as the increasing availability of genetic and other medical data offers researchers the

opportunity to model health in increasingly sophisticated ways.

I conclude with several suggestions of ways to further develop this research. First,

as the Arellano, Blundell and Bonhomme (2017) non-linear persistence framework

becomes better known, other researchers are suggesting modifications and improve-

ments, which could be applied to a health context. For example, Almuzara (2020)

develops a ‘heterogeneous transitory risk’ (HTR) model that offers a sophisticated way

of separately identifying the permanent and transitory components of a shock while

also permitting dependence between them. This cannot be done using the Arellano,

Blundell and Bonhomme (2017) approach. Health could be an interesting applica-

tion of this model, as many individuals suffer from multiple health conditions, and

capturing interactions between different conditions with different persistence profiles,

such as a long-term chronic health condition and shorter-term mental health shock,

could improve our health dynamics modelling.

Second, the focus of this paper has been to improve our ability to statistically

predict health dynamics, because doing so helps us understand how health impacts

economic decision making. However, I do not consider to what degree my predictions

map onto how individuals understand and predict their own health trajectory. There

are different ways to characterise this relationship: as a process of learning as a se-

ries of positive and negative health shocks helps people gradually learn their ‘health

type’, or whether individuals have a stable, long-term bias to be overly perssimistic,

optimistic, or broadly correct about their future health outcomes which has little rela-

tionship to their actual health histories. An interesting avenue for future research is to

better understand to what degree people modify their expectations of the frequency

and persistence of future health shocks following a period of poor health. Under-
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standing this relationship is important as the persistence and distribution of health

shocks affects both ex-ante choices (how people prepare in advance for a potential

health shock) and ex-post choices (how people respond to a realised health shock).

For example, a bad health shock may directly impact someones savings behaviour as

they have to stop working for a while and that reduces their income, but it might

also affect their savings behaviour by modifying their priors about their future health,

which will continue to impact their savings behaviour even when fully recovered. A

related improvement could be to separately consider the impact of negative and pos-

itive health shocks. Much of the literature focusses on modelling negative health

shocks, with little attention paid to recoveries, perhaps because overall health indices

heavily feature chronic health conditions and disabilities from which full recovery is

unlikely.

A final suggestion is that there is significant scope to improve our understanding

of the dynamics of sub-components of overall health, such as mental health. I showed

that in some important ways, the statistical properties of mental health dynamics

differs from the dynamics of overall health. There are lots of potential avenues for

future work on this topic. For example, researchers could build up a richer picture of

how mental health dynamics vary by observable characteristics such as age, gender

or education level, or the interaction between mental health dynamics and economic

events such as unemployment ((De Vera, Garcia-Brazales and Lin, 2023) is a current

working paper on a closely-related topic). My method of modelling mental health is

based on a score from a short questionnaire from the psychology literature, which is

common practise in the health economics literature but could be improved, such as by

making adjustments for the fact that it is measured as a non-negative integer that is

bounded from above and below (Mullahy, 2024), or by incorporating additional data

sources, such as high-frequency health information from wearable health technology.
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A Appendix

A.1 Attrition

I estimate a linear probability model of attrition to identify the magnitude of any

relationship between health and attrition risk. Those in poorest health quantile are

around two percentage points more likely to drop out of the sample next period.

Table 16: Linear probability model of attrition

Missing next period

health index quintile 1 (lowest) 0.0213∗∗∗

(8.14)

health index quintile 2 -0.00200

(-0.80)

health index quintile 3 (baseline) 0

health index quintile 4 -0.00131

(-0.52)

health index quintile 5 (highest) 0.00166

(0.62)

age -0.0205∗∗∗

(-5.88)

age squared 0.0577∗∗∗

(5.08)

age cubed -0.0861∗∗∗

(-5.61)

age quartic 0.0498∗∗∗

(6.75)

sex -0.00706∗∗∗

(-4.34)

Observations 228,886

t statistics in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In general, the literature is fairly sanguine about the risks of using health indices

for economic research when there is differential attrition risk by health. Jones, Kool-

man and Rice (2006) find that response rates to the British Household Panel Survey

(BHPS) vary by health, with elderly or low-income individuals who start the survey
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in poor health particularly likely to attrit, buts find that attempting to account for

this using inverse probability weights is unnecessary for most research applications.

Similarly, Pudney and Watson (2013) investigate the impact of reducing the effort

made to chase up non-responders to BHPS and HILDA (an Australian panel dataset)

surveys. While they find that the effort exerted to chase up non-respondents changed

the sample prevalence of disability and ill health, their subsequent statistical mod-

elling of the relationship between health and unemployment is unaffected. I conclude

that the observed level of attrition in my dataset does not pose a significant threat

to the robustness of my subsequent analysis.

A.2 Regression output from health index construction

I estimate the health index separately for each data wave using an ordered probit.

Below I report the output for the the second last wave of data (wave 11) as an example

to show how different objective variables contribute to the final index. Most of the

objective variables are dummy variables.

Table 17: Estimation of health index - wave 11

variables coefficient estimate t-stat

mobility - some difficulty -0.701*** (-18.97)

mobility - significant difficulty -1.069*** (-13.40)

lifting, carrying, moving objects - some difficulty -0.405*** (-10.77)

lifting, carrying, moving objects - significant difficulty -0.489*** (-7.65)

manual dexterity - some difficulty -0.173*** (-3.05)

manual dexterity - significant difficulty -0.401*** (-3.90)

continence - some difficulty -0.241*** (-4.81)

continence - significant difficulty -0.339*** (-3.33)

hearing - some difficulty -0.0565 (-0.76)

hearing - significant difficulty -0.0403 (-0.34)

sight - some difficulty -0.101 (-1.44)

sight - significant difficulty -0.134 (-1.18)

communication, speech problems - some difficulty -0.140 (-1.23)

communication, speech problems - significant difficulty -0.455* (-2.20)

memory, ability to concentrate, learn, understand - some difficulty -0.333*** (-6.02)

memory, ability to concentrate, learn, understand - sig. difficulty -0.398*** (-4.19)

recognise danger - some difficulty 0.116 (0.63)

recognise danger - significant difficulty 0.543* (2.25)

physical coordination - some difficulty -0.0759 (-1.29)

physical coordination - significant difficulty 0.111 (0.98)

personal care - some difficulty -0.144 (-1.91)

personal care - significant difficulty -0.321** (-2.87)
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other - some difficulty -0.581*** (-14.95)

other - significant difficulty -0.745*** (-10.50)

age 20-24 -0.244*** (-4.32)

age 25-29 -0.415*** (-7.33)

age 30-34 -0.452*** (-7.73)

age 35-39 -0.531*** (-9.61)

age 40-44 -0.649*** (-12.00)

age 45-49 -0.653*** (-12.49)

age 50-54 -0.732*** (-14.15)

age 55-59 -0.692*** (-13.66)

age 60-64 -0.764*** (-14.60)

age 65-69 -0.625*** (-11.88)

age 70 and older -0.616*** (-12.39)

female 0.117*** (6.43)

asthma - ever had 0.0609 (0.29)

arthritis - ever had 0.0407 (0.26)

congestive heart failure - ever had -0.285 (-0.58)

coronary heart disease - ever had 0.855** (2.76)

angina - ever had -0.175 (-0.45)

heart attack - ever had -0.358 (-1.93)

angina - ever had -0.0386 (-0.27)

emphysema - ever had -0.480 (-1.15)

hypothyroidism - ever had -0.0582 (-0.14)

chronic bronchitis - ever had -0.532 (-1.15)

chronic liver condition - ever had 0.405 (1.33)

cancer - ever had 0.324* (2.17)

diabetes - ever had -0.277 (-1.25)

epilepsy - ever had 0.0659 (0.16)

high blood pressure - ever had -0.0356 (-0.32)

other chronic condition - ever had -0.209*** (-3.78)

multiple sclerosis - ever had 0.148 (0.51)

COPD - ever had 0.158 (0.43)

emotional, nervous, psychiatric problem - ever had -0.252 (-1.08)

other cancer - ever had -0.590** (-2.90)

anxiety - ever had -0.0187 (-0.07)

depression - ever had -0.267 (-1.41)

asthma - still have -0.194 (-0.89)

arthritis - still have -0.128 (-0.78)

congestive heart failure - still have -0.327 (-0.60)

coronary heart disease - still have -1.019** (-3.00)

angina - still have -0.310 (-0.73)

hypothyroidism or underactive thyroid - still have -0.0505 (-0.12)

chronic bronchitis - still have 0.144 (0.27)

liver condition - still have -0.606 (-1.75)

cancer - still have -0.884*** (-4.44)

diabetes - still have -0.115 (-0.50)

epilepsy - still have -0.105 (-0.20)

high blood pressure - still have -0.134 (-1.14)

COPD - still have -0.488 (-1.28)

emotional or nervous or psychiatric condition - still have 0.521 (1.91)
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anxiety - still have -0.0641 (-0.24)

depression - still have 0.000729 (0.00)

1-2 visits to hospital outpatient in yr -0.132*** (-6.50)

3-5 visits to hospital outpatient in yr -0.384*** (-12.12)

6-10 visits to hospital outpatient in yr -0.476*** (-9.93)

>10 visits to hospital outpatient in yr -0.652*** (-9.31)

No job dummy -0.269*** (-9.84)

professional occupation 0.0977* (2.02)

skilled non-manual occupation -0.154*** (-5.00)

skilled manual occupation -0.1000** (-2.95)

partly skilled occupation -0.188*** (-5.45)

unskilled occupation -0.181** (-2.58)

GHQ score - 1 0.192 (0.66)

GHQ score - 2 -0.309 (-1.30)

GHQ score - 3 -0.261 (-1.19)

GHQ score - 4 -0.424* (-2.12)

GHQ score - 5 -0.476** (-2.60)

GHQ score - 6 -0.531** (-3.04)

GHQ score - 7 -0.639*** (-3.65)

GHQ score - 8 -0.720*** (-4.11)

GHQ score - 9 -0.851*** (-4.85)

GHQ score - 10 -0.962*** (-5.49)

GHQ score - 11 -1.051*** (-6.01)

GHQ score - 12 -1.163*** (-6.66)

GHQ score - 13 -1.226*** (-6.93)

GHQ score - 14 -1.221*** (-6.82)

GHQ score - 15 -1.268*** (-7.04)

GHQ score - 16 -1.354*** (-7.48)

GHQ score - 17 -1.292*** (-7.10)

GHQ score - 18 -1.433*** (-7.76)

GHQ score - 19 -1.389*** (-7.48)

GHQ score - 20 -1.402*** (-7.47)

GHQ score - 21 -1.447*** (-7.61)

GHQ score - 22 -1.634*** (-8.59)

GHQ score - 23 -1.698*** (-8.95)

GHQ score - 24 -1.497*** (-7.89)

GHQ score - 25 -1.788*** (-8.56)

GHQ score - 26 -1.864*** (-8.35)

GHQ score - 27 -1.823*** (-6.19)

GHQ score - 28 -2.013*** (-7.98)

GHQ score - 29 -1.703*** (-6.75)

GHQ score - 30 -2.027*** (-7.47)

GHQ score - 31 -1.980*** (-7.51)

GHQ score - 32 -1.922*** (-6.90)

GHQ score - 33 -2.272*** (-6.62)

GHQ score - 34 -2.033*** (-8.03)

GHQ score - 35 -1.946*** (-4.30)

GHQ score - 36 -1.527*** (-3.66)

Education - GSCEs 0.0511* (1.96)
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Education - Yr12 0.125*** (3.66)

Education - Degree 0.275*** (10.81)

pregnant 0.174 (1.70)

N 24,987

t stats in parentheses, exclude reporting time dummies coefficients, *p<0.05, **p<0.01, *** p<0.001

A.3 Genetic data

Polygenic scores (PGS) are scores constructed using genetic data that estimate an

individual’s propensity to express a phenotype, which is an observable trait. They

are calculated from genome-wide association studies (GWAS), which are systematic

analyses of genetic variation across the entire human genome and their association

with various phenotypes. I make use of the latest (2022) version of the ELSA poly-

genic scores (Ajnakin and Andrew Steptoe, 2022) and select some of them to capture

health conditions with the biggest disease burdens, which I report in Table 18. I use

these polygenic scores to create two health aggregates; one capturing chronic physical

health conditions, the other mental health. The correlation between the two indices

is small.

Table 18: Polygenic Score Aggregation

Physical index Mental index
Coronary artery disease (2016) Alzheimer’s disease (2019)
Type II diabetes (2018) Depressive Symptoms
Rheumatoid arthritis Major depressive disorder (2018)
Myocardial infarction Anxiety (case-control)
Migrane (2016) Schizophrenia (2020)
Chronic pain Bipolar disorders (2021)
Waist-hip-ratio Subjective wellbeing

Loneliness

My method of aggregation is identical to how I aggregate the biomarker data.

I normalise each PGS and then aggregate them. I consider alternate aggregation

methods, including factor analysis and converting each PGS into a binary variable

with the highest 10-20 per cent of scores coded as ’1’, however the resulting indexes are

all quite similar. To assess the predictive value of my PGS indices, I regress a health

index constructed using ELSA data, that is designed to be as similar as possible to my

main health index constructed using Understanding Society data, against normalised

58



polygenic scores for all the PGS that make up my indices for mental and physical

health. I report the results of this exercise in Table 19. The major depressive disorder

PGS has the highest predictive power although the predictive power of many of the

eight mental health PGS are quite similar. The predictive power of the physical PGS

are much more varied, with chronic pain being by far the most important.

Table 19: How well individual polygenic scores predict health index

components of
z-score of PGS mental index physical index
z score: depressive symptoms -0.0302***

(0.00486)
z score: major depressive disorder -0.0521***

(0.00515)
z score: anxiety 0.00763

(0.00490)
z score: schizophrenia 0.0192***

(0.00575)
z score: bipolar -0.00397

(0.00468)
z score: subjective well-being 0.0119**

(0.00433)
z score: Alzheimer’s -0.0170***

(0.00394)
z score: loneliness -0.0340***

(0.00490)
z score: arthritis 0.00911*

(0.00426)
z score: coronary heart disease 0.00193

(0.00401)
z score: diabetes -0.0342***

(0.00409)
z score: chronic pain -0.112***

(0.00416)
z score: myocardial infarction -0.0192***

(0.00408)
z score: waist-hip ratio -0.0121**

(0.00394)
z score: migraines -0.00235

(0.00378)
N 37,543 37,546

I then repeat this exercise, but with the PGS scores aggregated into two indices

that capture mental and physcial health, and report the results in Table 20. I find that

while the both indices based on genetic data are significantly correlated with the level

of health index and its variance over time, and contains additional information not

captured by lagged health index terms or biomarkers, the size of the coefficients are
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very small. I conclude that the coefficient sizes are too small to be a useful addition

to modelling the overall dynamics of the health index. However, a more granular

approach may be more effective. This could include using only individual PGS with

higher predictive power or for diseases with high incidence rates such as diabetes and

depression rather than rarer conditions such as schizophrenia.

Table 20: How well aggregated polygenic scores predict health index

level of health index variance of health index
(1) (2) (3) (4) (5) (6)

mental index -0.00746∗∗∗ -0.00125∗ -0.00768∗∗∗ 0.000810∗∗∗ 0.000392 0.000654∗

(-8.42) (-2.10) (-6.31) (4.48) (1.93) (2.52)

physical index -0.0229∗∗∗ -0.00476∗∗∗ -0.0187∗∗∗ 0.00165∗∗∗ 0.000809∗∗ 0.00136∗∗∗

(-18.28) (-5.42) (-10.71) (6.24) (2.63) (3.56)

mental index 2 -0.000496∗∗∗ -0.000187∗ -0.000463∗∗ 0.0000500∗ 0.0000226 0.0000302
(-4.73) (-2.45) (-3.19) (2.37) (0.93) (1.01)

physical index 2 -0.000519∗ 0.0000618 -0.000417 0.0000270 0.0000366 0.00000785
(-2.05) (0.34) (-1.18) (0.49) (0.57) (0.10)

lagged health index 0.840∗∗∗ -0.0485∗∗∗

(201.75) (-29.36)

allostatic index -0.385∗∗∗ 0.0330∗∗∗

(-18.59) (10.38)

N 37,543 25,256 18,304 37,412 25,256 18,203

t statistics in parentheses; also control for age and gender, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.4 Replication exercise using non-detrended health data

I replicate the preferred baseline ARMA(1,1) model estimated using health data

that has not been detrended by age and sex and a Difference-GMM specification.

This exercise shows that the persistence estimates are robust to being detrending by

age and sex; the slightly higher persistence estimates in this case are due to a gradual

decline in health as people age being incorporated into the persistence estimates.

60



Table 21: Estimation of ARMA(1,1) model with non-detrended health index

health index

L.health index 1.038∗∗∗

(0.0227)

Hansen J test stat 2.756

Hansen J p value 0.431

N 222,095

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.5 ARMA(p,q) groups from clustering analysis

The partition clustering algorithm makes an initial partition of individuals into

clusters based on the number of desired clusters, and then reallocates individuals

until the final partition minimises the residual sum of the squared objective function.

The optimal number of clusters for a given model is selected as the one with the

lowest model information criterion (MIC). I describe the main characteristics of the

two clusters I obtain after performing clustering analysis in Table 22. Relative to

group 2, group 1 contains individuals with worse health on average. The individuals

in the two groups are just as likely to experience a large negative health shock of

at least one standard deviation (6.6 and 6.7 per cent of observations respectively),

but the second group is more likely to experience a positive shock (5.3 versus 6.4 per

cent).

Table 22: Group characteristics*

Group 1 Group 2
mean health index 0.024 0.134

median health index 0.186 0.254

st. dev of health indices 0.670 0.565

mean allostatic score 0.023 -0.046

N 28,644 44,231
* Only include individuals where T=12

I then replicate my difference and system GMM specifications I used for estimating

the ARMA(p,q) specification for my main health index for each group separately.
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Table 23: GMM estimates of the health process, by cluster

Difference GMM System GMM
group 1 group 2 group 1 group 2

MA(0) MA(1) MA(0) MA(1) MA(0) MA(1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

L.health 0.709∗∗∗ 0.791∗∗∗ 0.898∗∗∗ 0.922∗∗∗ 0.104∗∗∗ 0.187∗∗∗ 0.997∗∗∗ 0.893∗∗∗ 0.742∗∗∗ 0.828∗∗∗

(0.0203) (0.0218) (0.0311) (0.100) (0.0119) (0.0172) (0.132) (0.164) (0.00819) (0.0461)

L2.health 0.0876∗∗∗ -0.0207 0.0737∗∗∗ -0.00265 0.0807∗∗∗

(0.0124) (0.0822) (0.0127) (0.0236) (0.0106)
AB test, order 1 z score -26.87 -27.77 -21.04 -6.27 -35.4 -31.92 -9.46 -6.99 -33.00 -19.15
AB test, order 1 p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AB test, order 2 z score 3.44 -1.21 3.59 1.27 3.36 -1.46 6.02 4.2 -1.11 9.39
AB test, order 2 p value 0.001 0.226 0.000 0.203 0.001 0.145 0.000 0.000 0.266 0.000
Hansen J test statistic 63.74 3.39 1.47 1.37 78.77 43.01 1.71 7.19 12.74 4.09
Hansen J p value 0.000 0.495 0.689 0.712 0.000 0.000 0.634 0.066 0.047 0.394
Observations 28,644 26,040 28,644 26,040 44,231 40,210 44,231 40,210 26,040 44,231

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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This exercise shows that Group 1 is best modelled as an AR(2) process and group

2 as an ARMA(1,1) process. Table 24 reports the results of estimating the MA(1)

coefficient for group 2, which I estimate to be -0.54.

Table 24: GMM Estimation of MA(1) coefficient - group 2

ρ = 0.83

ηi 0.0851∗∗∗

(0.00280)

θ -0.544∗∗∗

(0.0249)

εit 0.289∗∗∗

(0.00411)
N 44,231

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.6 ARCH model estimates

An autoregressive conditional heteroskedasticity (ARCH) model allows us to ac-

counts for whether individuals who have recently experienced a health shock, captured

in the model as a large εit term, are more or less likely to experience additional health

shocks in the subsequent period. I estimate an ARCH(1) model with the following

exponential variance specification: σ2
it = exp(γ0 + γ1ε

2
i,t−1 + γ2εi,t−1). The γ2 term al-

lows for asymmetry between negative and positive shocks. To estimate ARCH effects

using GMM I use the following moment condition derived by Arellano (1995). For

robustness I also estimate the more general specification by Meghir and Windmeijer

(1999) and obtain similar results.

E
[
hi,t−k

(
ε2i,t−1 −

ε2i,t(1 + σ2
it−1)

(1 + σ2
i,t)

)]
= 0, k = 1...t− 3

An ARCH effect exists if the γ1 and γ2 terms on the lagged error terms in the

variance specification (σ2
it) are significantly different from zero. I report my results in

Table 25. I find that while the point estimates for the γ terms are reasonable, and

suggest that a person who experiences a large health shock has more volatile health

next period, especially if they suffer a negative health shock, the estimates are not
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statistically significant. I conclude that there is no evidence for ARCH effects in the

data.

Table 25: GMM estimates of ARCH(1) effect

variables estimates
γ0 -2.5176

(5.7445)

γ1 0.3301
(0.5848)

γ2 -0.1648
(0.8703)

standard errors in parentheses, ∗ = p < 0.05

I also consider shock heterogeneity in a different way. Figure 13 graphs the re-

lationship between the magnitude of a health shock in period t and the extent of

recovery/mean-reversion five years later. I plot the initial health shock (hi,t − hi,t−1)

on the x axis and the difference between health at period t and five years later

(hi,t+5 − hi,t) on the y axis. A steeper downward-sloping line suggests a faster rate

of mean-reversion, while a flat line would indicate that there has been no change in

health between period t and period t + 5. I graph this relationship for each sextile

based on average health in the period prior to the shock (t + 1). The design of this

graph was adapted from an earnings dynamics graph by Guvenen et al. (2021). Fig-

ure 13 shows that there is significantly less recovery from negative shocks than would

be predicted by an ARMA(1,1) model with normally distributed white-noise shocks,

which would achieve around a 60 per cent mean revision, especially among those in

persistently poor health prior to the negative shock. The health dynamics of those

whose health is in the bottom sixth of the sample are much less well captured by an

ARMA(1,1) model relative to those in the upper two-thirds. This exercise suggests

that simple ARMA models are adequate for approximating the health process for

the healthier section of the population, but are much less accurate for those with a

history of poor health.
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Figure 13

A.7 ARMA models with additional allostatic regressors

Adding allostatic scores as an additional regressor, or as a dummy variable for

whether individuals have ‘bad’ allostatic scores interacted with the lagged health

term, has very little impact on my linear estimates of health. Table 26 reports the

regression output if I include these additional terms in my preferred specification.
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Table 26: Health index estimates with additional allostatic score regressors

(1) (2)

L.health index 0.890∗∗∗ 0.876∗∗∗

(0.0286) (0.0218)

allostatic scores 0.203 -0.348

(0.302) (0.178)

L.health index × allostatic scores -0.131

(0.0711)

Observations 70,039 70,039

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.8 Additional non-linear health persistence estimates re-

sults

I report the full results of re-estimating the non-linear persistence model when

the sample is split into two sub-groups based on allostatic score in Tables 27 and

28. Table 29 reports output from the same estimation process, where I separately

estimate the health persistence for individuals with higher and lower allostatic scores.

However, this time I only report the persistence results for the persistent component

(ρt(τ)) rather than the entire index. I do not control for fixed effects in either set of

results.
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Table 27: Non-linear persistence estimates: low allostatic scores sub-sample (healthy)

Shock size percentiles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
1 1.15 1.09 1.04 0.98 0.92 0.88 0.82 0.76 0.71 0.64 0.55
2 1.08 1.02 0.98 0.93 0.87 0.84 0.79 0.74 0.70 0.63 0.54
3 1.02 0.97 0.93 0.89 0.84 0.81 0.78 0.73 0.69 0.63 0.55
4 0.98 0.92 0.89 0.86 0.82 0.79 0.77 0.72 0.69 0.63 0.55
5 0.93 0.89 0.85 0.83 0.80 0.78 0.76 0.72 0.69 0.63 0.56
6 0.89 0.85 0.82 0.80 0.78 0.77 0.75 0.72 0.68 0.63 0.57
7 0.85 0.81 0.79 0.78 0.76 0.75 0.74 0.72 0.68 0.64 0.58
8 0.81 0.77 0.75 0.75 0.74 0.74 0.74 0.71 0.68 0.64 0.59
9 0.76 0.73 0.72 0.72 0.72 0.73 0.73 0.71 0.69 0.65 0.60
10 0.70 0.68 0.67 0.69 0.70 0.71 0.72 0.71 0.69 0.65 0.61
11 0.62 0.61 0.61 0.64 0.67 0.69 0.71 0.71 0.69 0.66 0.63

*1=most negative, 11=most positive

Table 28: Non-linear persistence estimates: high allostatic score sub-sample (un-
healthy)

Shock size percentiles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
1 1.09 1.06 1.05 1.02 1.01 0.99 0.97 0.93 0.90 0.85 0.77
2 1.10 1.07 1.05 1.02 0.99 0.96 0.94 0.90 0.85 0.80 0.72
3 1.08 1.05 1.02 0.99 0.96 0.93 0.91 0.87 0.82 0.77 0.69
4 1.07 1.02 1.00 0.96 0.93 0.90 0.88 0.84 0.79 0.74 0.66
5 1.05 1.00 0.97 0.94 0.90 0.88 0.85 0.81 0.77 0.72 0.64
6 1.03 0.98 0.95 0.92 0.88 0.85 0.83 0.79 0.74 0.70 0.63
7 1.02 0.96 0.93 0.90 0.86 0.83 0.81 0.77 0.73 0.68 0.62
8 1.00 0.94 0.90 0.87 0.84 0.81 0.78 0.75 0.71 0.66 0.60
9 0.98 0.92 0.88 0.85 0.81 0.79 0.76 0.73 0.69 0.64 0.59
10 0.96 0.90 0.85 0.82 0.79 0.76 0.73 0.71 0.67 0.62 0.58
11 0.93 0.87 0.81 0.79 0.75 0.73 0.70 0.67 0.64 0.60 0.56

*1=most negative, 11=most positive
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Table 29: Estimates of coefficient of persistent component ρt(τ)

Shock size percentiles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
Sub-sample with below-average (good) allostatic scores

1 1.48 1.35 1.25 1.15 1.05 0.97 0.91 0.86 0.80 0.68 0.39
2 1.35 1.21 1.13 1.04 0.96 0.90 0.85 0.81 0.76 0.66 0.46
3 1.24 1.11 1.02 0.96 0.89 0.85 0.80 0.76 0.72 0.64 0.50
4 1.15 1.02 0.95 0.89 0.84 0.80 0.76 0.73 0.69 0.63 0.53
5 1.08 0.95 0.88 0.84 0.80 0.77 0.73 0.70 0.67 0.61 0.55
6 1.02 0.90 0.83 0.79 0.76 0.74 0.71 0.68 0.65 0.60 0.56
7 0.96 0.85 0.79 0.76 0.73 0.71 0.68 0.66 0.63 0.59 0.58
8 0.91 0.80 0.74 0.72 0.70 0.69 0.66 0.64 0.61 0.58 0.59
9 0.86 0.75 0.70 0.68 0.67 0.66 0.64 0.62 0.60 0.57 0.60
10 0.80 0.69 0.65 0.64 0.64 0.63 0.61 0.59 0.58 0.56 0.61
11 0.70 0.61 0.57 0.57 0.58 0.59 0.57 0.56 0.55 0.54 0.63

Subsample with above-average (bad) allostatic scores

1 1.35 1.25 1.16 1.03 0.96 0.92 0.89 0.83 0.78 0.68 0.52
2 1.26 1.19 1.11 1.00 0.94 0.91 0.89 0.83 0.79 0.71 0.58
3 1.17 1.13 1.05 0.96 0.91 0.89 0.87 0.83 0.79 0.73 0.61
4 1.08 1.07 1.00 0.93 0.89 0.88 0.86 0.82 0.79 0.73 0.64
5 1.01 1.01 0.96 0.90 0.87 0.86 0.85 0.82 0.79 0.74 0.66
6 0.94 0.96 0.92 0.87 0.85 0.85 0.84 0.81 0.79 0.74 0.67
7 0.88 0.92 0.88 0.85 0.84 0.84 0.83 0.81 0.79 0.75 0.69
8 0.82 0.87 0.84 0.82 0.82 0.83 0.82 0.81 0.79 0.75 0.70
9 0.75 0.82 0.80 0.80 0.80 0.81 0.81 0.80 0.79 0.75 0.72
10 0.67 0.76 0.75 0.76 0.78 0.80 0.80 0.79 0.78 0.75 0.73
11 0.53 0.66 0.67 0.71 0.74 0.77 0.77 0.78 0.78 0.76 0.76

*1=most negative, 11=most positive

A.9 Additional mental health persistence estimates results
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Table 30 reports the coefficient estimates for the lagged GHQ term when estimating

an ARMA(1,1) model for the mental health index using GMM.

Table 30: ARMA(1,1) model of GHQ scores

Diff-GMM Sys-GMM

L.ghq 0.610∗∗∗ 0.693∗∗∗

(0.0508) (0.0388)

AB test, order 1, z score -17.27 -22.72

AB test, order 1, p value 0.000 0.000

AB test, order 2, z score 8.960 11.42

AB test, order 2, p value 0.000 0.000

AB test, order 3, z score 0.158 0.262

AB test, order 3, p value 0.874 0.793

Hansen J test stat 2.223 7.41

Hansen J test p value 0.527 0.115

Observations 222,095 222,095

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Incorporating additional lagged terms found to be insignificant

I report some additional results from the non-linear persistence estimates of mental

health. First, I report the persistence estimates in Table 31 that accompany the

graphs I include in section 6 (Figure 12). Second, I illustrate the impact of taking

fixed effects into account when calculating mental health persistence in Figure 14.
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Table 31: Mental health persistence estimates

Shock size percentiles*
1 2 3 4 5 6 7 8 9 10 11

healtht−1*
1 1.09 1.00 0.90 0.78 0.66 0.56 0.45 0.34 0.26 0.18 0.06
2 1.08 0.96 0.86 0.76 0.66 0.58 0.49 0.40 0.33 0.25 0.13
3 1.02 0.90 0.81 0.73 0.66 0.59 0.52 0.44 0.38 0.30 0.19
4 0.97 0.86 0.78 0.71 0.65 0.60 0.54 0.48 0.41 0.34 0.24
5 0.92 0.82 0.74 0.69 0.65 0.61 0.56 0.50 0.45 0.37 0.28
6 0.87 0.77 0.71 0.67 0.65 0.62 0.58 0.53 0.48 0.40 0.32
7 0.81 0.72 0.67 0.65 0.64 0.62 0.60 0.56 0.51 0.44 0.36
8 0.75 0.67 0.63 0.63 0.63 0.63 0.62 0.59 0.54 0.47 0.41
9 0.69 0.62 0.60 0.61 0.63 0.64 0.64 0.62 0.57 0.51 0.46
10 0.63 0.56 0.55 0.59 0.62 0.65 0.66 0.65 0.61 0.54 0.50
11 0.54 0.48 0.50 0.55 0.61 0.66 0.69 0.70 0.65 0.59 0.57

*1=most negative, 11=most positive

Figure 14: Persistence of GHQ index

(a) Persistent component only (b) Persistent component w FE
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